Persistent Monitoring of Events with Stochastic Arrivals

Jingjin Yu
Sertac Karaman
Daniela Rus

* CSAIL @ Massachusetts Institute of Technology
** MechE @ Boston University

Supported by:
Ubiquity of Persistent Monitoring Tasks
Ubiquity of Persistent Monitoring Tasks

Arise whenever *spatially distributed events* must be continuously surveyed with *limited mobile resources*.
Arise whenever *spatially distributed events* must be continuously surveyed with *limited mobile resources*.
Arise whenever *spatially distributed events* must be continuously surveyed with *limited mobile resources*.
Ubiquity of Persistent Monitoring Tasks

Arise whenever *spatially distributed events* must be continuously surveyed with *limited mobile resources*.
Focus: Events with Stochastic Arrivals

Key characteristics:
Focus: Events with Stochastic Arrivals

Key characteristics:

- *Transient* – the event soon expires/disappears afterwards
Focus: Events with Stochastic Arrivals

Key characteristics:

- **Transient** – the event soon expires/disappears afterwards
- **Temporal stochasticity** – arrival time is unknown *a priori*
Focus: Events with Stochastic Arrivals

Key characteristics:
- **Transient** – the event soon expires/disappears afterwards
- **Temporal stochasticity** – arrival time is unknown *a priori*
- The **average rate of arrival** may be known roughly
Focus: Events with Stochastic Arrivals

Key characteristics:

- **Transient** – the event soon expires/disappears afterwards
- **Temporal stochasticity** – arrival time is unknown *a priori*
- The **average rate of arrival** may be known roughly
- Collecting such events requires *waiting* at the event sites
Problem Formulation
Problem Formulation
Problem Formulation

\[\lambda_1 = 0.5 \]

\[\lambda_2 = 1.3 \]

\[\lambda_3 = 2.5 \]

\[\lambda_4 = 1.2 \]

\[\lambda_5 = 1.6 \]

\[\lambda_6 = 0.9 \]
Problem Formulation

- Determining a policy $\pi = (t_1, \ldots, t_n)$ that
Determining a policy $\pi = (t_1, \ldots, t_n)$ that
Maximizes the amount of events observed in a balanced way
Problem Formulation

- Determining a policy $\pi = (t_1, ..., t_n)$ that
- Maximizes the amount of events observed in a balanced way
- Minimizes the maximum delay between event observations
Problem Formulation, cont.

- A mobile sensor patrols a cyclic route along sites $S = \{s_1, ..., s_n\}$
- Events at site s_i follow a Poisson process of intensity λ_i
- Travelling from site i to site j takes τ_{ij} time; total travel time $T_{tr} := \sum \tau_{ij}$.
- Also, given policy $\pi = (t_1, ..., t_n)$, let observation time $T_{obs} := \sum t_i$, cyclic period $T := T_{obs} + T_{tr}$

Find policy $\pi^* = (t_1^*, ..., t_n^*)$, over an infinite horizon
- Maximize data collecting effort in a balanced manner, measured by ($N_i(\pi)$ is the total events observed at s_i)

$$J_1(\pi) = \min_i \frac{\mathbb{E}[N_i(\pi)]}{\sum_{j=1}^{n} \mathbb{E}[N_j(\pi)]}$$

- Minimize maximum data collection delay ($T_i(\pi)$) between consecutive visits to the same site

$$J_2(\pi) = \max_i \mathbb{E}[T_i(\pi)]$$
Related Work

Persistent monitoring: Michael et al. (2011); Smith et al. (2011); Alamdari et al. (2012); Arvelo et al. (2012); Cassandras et al. (2013); Girard et al. (2004); Grocholsky et al. (2006); Lan and Schwager (2013); Nigam and Kroo (2008); Smith et al. (2012); Soltero et al. (2012).

Sensor scheduling: Fuemmeler and Veeravalli (2008); He and Chong (2004); Hero et al. (2008); Ny et al. (2008).

Coverage: Choset (2000, 2001); Gabriely and Rimon (2003); Chin and Ntafos (1988); Hokayem et al. (2008); Ntafos (1991).
Main Result

- There is an *uncountably infinite* set of policies, Π, that maximizes $J_1(\pi)$
- There is a *unique policy* $\pi^* = (t_1^*, \ldots, t_n^*) \in \Pi$ that minimizes $J_2(\pi)$
- This is due to the *quasi-convexity* of $\mathbb{E}[T_i(\pi)]$ ($J_2(\pi) = \max_i \mathbb{E}[T_i(\pi)]$)

- Furthermore, we can *efficiently* compute π^*: $O(n)$ time for n sites, and then $O(\log n)$ for adding/removing sites
Optimizing the First Objective $J_1(\pi)$

Recall that $\pi := (t_1, \ldots, t_n)$, $N_i(\pi) :=$ total number of events observed at site s_i
Optimizing the First Objective $J_1(\pi)$

Recall that $\pi := (t_1, \ldots, t_n)$, $N_i(\pi) :=$ total number of events observed at site s_i

$$J_1(\pi) = \min_i \frac{\mathbb{E}[N_i(\pi)]}{\sum_{j=1}^n \mathbb{E}[N_j(\pi)]} = \min_i \frac{\lambda_i t_i}{\sum_{j=1}^n \lambda_j t_j}$$
Recall that $\pi := (t_1, ..., t_n)$, $N_i(\pi) :=$ total number of events observed at site s_i

$$J_1(\pi) = \min_i \frac{\mathbb{E}[N_i(\pi)]}{\sum_{j=1}^{n} \mathbb{E}[N_j(\pi)]} = \min_i \frac{\lambda_i t_i}{\sum_{j=1}^{n} \lambda_j t_j}$$

$$\max_{\pi} J_1(\pi) \Rightarrow \lambda_1 t_1 = \cdots = \lambda_n t_n$$
Optimizing the First Objective $J_1(\pi)$

Recall that $\pi := (t_1, ..., t_n)$, $N_i(\pi) :=$ total number of events observed at site s_i

$$J_1(\pi) = \min_i \frac{\mathbb{E}[N_i(\pi)]}{\sum_{j=1}^n \mathbb{E}[N_j(\pi)]} = \min_i \frac{\lambda_i t_i}{\sum_{j=1}^n \lambda_j t_j}$$

$$\max_{\pi} J_1(\pi) \Rightarrow \lambda_1 t_1 = \cdots = \lambda_n t_n$$

$$\sum_{i=1}^n t_i = T_{obs}$$
Optimizing the First Objective $J_1(\pi)$

Recall that $\pi := (t_1, ..., t_n)$, $N_i(\pi) :=$ total number of events observed at site s_i

$$J_1(\pi) = \min_i \frac{\mathbb{E}[N_i(\pi)]}{\sum_{j=1}^{n} \mathbb{E}[N_j(\pi)]} = \min_i \frac{\lambda_i t_i}{\sum_{j=1}^{n} \lambda_j t_j}$$

$$\max_{\pi} J_1(\pi) \Rightarrow \lambda_1 t_1 = \cdots = \lambda_n t_n$$

$$\sum_{i=1}^{n} t_i = T_{obs} \quad \Rightarrow \quad t_i = \sigma \frac{T_{obs}}{\lambda_i} = \frac{T_{obs}}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}}$$
Optimizing the First Objective $J_1(\pi)$

Recall that $\pi := (t_1, ..., t_n)$, $N_i(\pi) :=$ total number of events observed at site s_i

$$J_1(\pi) = \min_i \frac{\mathbb{E}[N_i(\pi)]}{\sum_{j=1}^{n} \mathbb{E}[N_j(\pi)]} = \min_i \frac{\lambda_i t_i}{\sum_{j=1}^{n} \lambda_j t_j}$$

$$\max_{\pi} J_1(\pi) \Rightarrow \lambda_1 t_1 = \cdots = \lambda_n t_n$$

$$\sum_{i=1}^{n} t_i = T_{obs} \quad \Rightarrow \quad t_i = \frac{\sigma T_{obs}}{\lambda_i} = \frac{T_{obs}}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}}$$

T_{obs} is arbitrary

\Rightarrow *uncountably infinite* number of policies that maximizes $J_1(\pi)$
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

\[T = T_{obs} + T_{tr} \]
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

\[T = T_{obs} + T_{tr} \]

$T_i(\pi)$
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

$$
T_i = T_{\text{obs}} + T_{\text{tr}}
$$
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

\[E_m := \mathbb{E}[t_{left} + t_{right} + T - t_i + mT] \]
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

\[\mathbb{E}_m := \mathbb{E}[t_{left} + t_{right} + T - t_i + mT] = 2\mathbb{E}[t_{left}] + (m + 1)T - t_i \]
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

$$
\mathbb{E}_m := \mathbb{E}[t_{left} + t_{right} + T - t_i + mT] = 2\mathbb{E}[t_{left}] + (m + 1)T - t_i
$$

$$
= 2 \left(\frac{1}{\lambda_i} - \frac{t_i e^{-\lambda_i t_i}}{1 - e^{-\lambda_i t_i}} \right) + (m + 1)T - t_i
$$
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

\[T = T_{obs} + T_{tr} \]

\[t_i \]

\[t_{left} \quad T - t_i \quad mT \quad t_{right} \]

\[\mathbb{E}_m := \mathbb{E}[t_{left} + t_{right} + T - t_i + mT] = 2\mathbb{E}[t_{left}] + (m + 1)T - t_i \]

\[= 2 \left(\frac{1}{\lambda_i} - \frac{t_i e^{-\lambda_i t_i}}{1 - e^{-\lambda_i t_i}} \right) + (m + 1)T - t_i \]

\[\mathbb{E}[T_i(\pi)] = p_m \mathbb{E}_m = e^{-m\lambda_i t_i} (1 - e^{-\lambda_i t_i}) \mathbb{E}_m \]
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

\[T = T_{\text{obs}} + T_{\text{tr}} \]

\[t_i \quad t_{\text{left}} \quad T - t_i \quad mT \quad t_{\text{right}} \quad t \]

\[\mathbb{E}_m := \mathbb{E}[t_{\text{left}} + t_{\text{right}} + T - t_i + mT] = 2\mathbb{E}[t_{\text{left}}] + (m + 1)T - t_i \]

\[= 2 \left(\frac{1}{\lambda_i} - \frac{t_i e^{-\lambda_i t_i}}{1 - e^{-\lambda_i t_i}} \right) + (m + 1)T - t_i \]

\[\mathbb{E}[T_i(\pi)] = p_m \mathbb{E}_m = e^{-m\lambda_i t_i} (1 - e^{-\lambda_i t_i}) \mathbb{E}_m = \frac{2}{\lambda_i} - \frac{T_{\text{obs}} + T_{\text{tr}} + t_i - t_i e^{-\lambda_i t_i}}{1 - e^{-\lambda_i t_i}} \]
Computing the Expected Delay $\mathbb{E}[T_i(\pi)]$

$$
\begin{align*}
\mathbb{E}_m & := \mathbb{E}[t_{left} + t_{right} + T - t_i + mT] = 2\mathbb{E}[t_{left}] + (m + 1)T - t_i \\
& = 2 \left(\frac{1}{\lambda_i} - \frac{t_i e^{-\lambda_i t_i}}{1 - e^{-\lambda_i t_i}} \right) + (m + 1)T - t_i \\
\mathbb{E}[T_i(\pi)] & = p_m \mathbb{E}_m = e^{-m\lambda_i t_i} (1 - e^{-\lambda_i t_i}) \mathbb{E}_m = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + t_i - t_i e^{-\lambda_i t_i}}{1 - e^{-\lambda_i t_i}} \\
t_i & = \frac{T_{obs}}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs} e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}} \\
\gamma_i & := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}}
\end{align*}
$$
$\mathbb{E}[T_i(\pi)]$ as Function of $T = T_{obs} + T_{tr}$
\[\mathbb{E}[T_i(\pi)] \text{ as Function of } T = T_{obs} + T_{tr} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda') (1/hr)</td>
<td>0.5</td>
<td>1.3</td>
<td>2.5</td>
<td>1.2</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>(\tau_{ij}) (hrs)</td>
<td>0.15</td>
<td>0.25</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
$\mathbb{E}[T_i(\pi)]$ as Function of $T = T_{obs} + T_{tr}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_i's (1/hr)</td>
<td>0.5</td>
<td>1.3</td>
<td>2.5</td>
<td>1.2</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>τ_{ij} (hrs)</td>
<td>0.15</td>
<td>0.25</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

![Graph showing expected delay (hrs) vs T (policy period hrs)]
$\mathbb{E}[T_i(\pi)]$ as Function of $T = T_{obs} + T_{tr}$, cont.
$\mathbb{E}[T_i(\pi)]$ as Function of $T = T_{obs} + T_{tr}$, cont.
\[\mathbb{E}[T_i(\pi)] \] as Function of \(T = T_{obs} + T_{tr} \), cont.
\(\mathbb{E}[T_i(\pi)] \) as Function of \(T = T_{obs} + T_{tr} \), cont.

Key properties of \(\mathbb{E}[T_i(\pi)] \)

- **Monotonic** in \(\lambda_i \)
\(\mathbb{E}[T_i(\pi)] \) as Function of \(T = T_{obs} + T_{tr} \), cont.

Key properties of \(\mathbb{E}[T_i(\pi)] \):
- **Monotonic** in \(\lambda_i \)
- Appears to be **convex**
$\mathbb{E}[T_i(\pi)]$ as Function of $T = T_{obs} + T_{tr}$, cont.

Key properties of $\mathbb{E}[T_i(\pi)]$

- **Monotonic** in λ_i
- Appears to be **convex** ← actually, **quasi-convex**
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

$$\{\lambda_i\} \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}}$$
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

\[\{\lambda_i\} \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} \]

\[\{\tau_{ij}\} \Rightarrow T_{tr} \]
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

\[\{\lambda_i\} \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} \]

\[\{\tau_{ij}\} \Rightarrow T_{tr} \]

\[\Rightarrow \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs}e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}} \]
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

$$\{\lambda_i\} \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}}$$

$$\{\tau_{ij}\} \Rightarrow T_{tr}$$

$$\Rightarrow \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs} e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}}$$

![Graph showing the relationship between λ and $\mathbb{E}[T_i(\pi)]$ for different values of λ.]
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

$$\{\lambda_i\} \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}}$$

$$\{\tau_{ij}\} \Rightarrow T_{tr}$$

$$\Rightarrow \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs} e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}}$$

$$\implies \max_i \mathbb{E}[T_i(\pi)]$$

![Graph showing the relationship between λ and $\mathbb{E}[T_i(\pi)]$ for different values of λ. The graph compares λ values of 0.5, 1.3, 2.5, 1.2, 1.6, and 0.9. The curve for $\lambda = 0.5$ is the highest, indicating a decrease in $\mathbb{E}[T_i(\pi)]$ as λ increases.]
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

$\{\lambda_i\} \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} \left\{ \{t_{ij}\} \Rightarrow T_{tr} \right\} \Rightarrow \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs} e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}}$

\[\max_{i} \mathbb{E}[T_i(\pi)]\]
\[\min_{\pi} \max_{i} \mathbb{E}[T_i(\pi)]\]
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

\[
\{\lambda_i\} \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} \quad \left\{ \begin{array}{l}
\{\tau_{ij}\} \Rightarrow T_{tr} \\
\end{array} \right. \Rightarrow \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs} e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}}
\]

\[T^* = T_{obs} + T_{tr}\]
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

\begin{align*}
\{\lambda_i\} & \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} \\
\{\tau_{ij}\} & \Rightarrow T_{tr} \\
& \Rightarrow \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs} e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}}
\end{align*}

\[t_i = \gamma_i T_{obs} \]

$T^* = T^*_{obs} + T_{tr} \Rightarrow \pi^* = (t^*_1, \ldots, t^*_n)$
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

\[
\{\lambda_i\} \Rightarrow y_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} \quad \Rightarrow \quad \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + y_i T_{obs} - y_i T_{obs} e^{-\lambda_i y_i T_{obs}}}{1 - e^{-\lambda_i y_i T_{obs}}}
\]

\[
\{\tau_{ij}\} \Rightarrow T_{tr}
\]

\[
\begin{align*}
\text{max } \mathbb{E}[T_i(\pi)] & \quad \Rightarrow \quad \max_i \mathbb{E}[T_i(\pi)] \\
\text{min } \max_{\pi} \mathbb{E}[T_i(\pi)] & \quad \Rightarrow \quad \min_{\pi} \max_i \mathbb{E}[T_i(\pi)]
\end{align*}
\]

- Computing $\{y_i\}$ takes $O(n)$ time

\[
T^* = T_{obs}^* + T_{tr} \quad \Rightarrow \pi^* = (t_1^*, \ldots, t_n^*)
\]
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

\[
\{\lambda_i\} \Rightarrow \gamma_i := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} \quad \Rightarrow \\
\{\tau_{ij}\} \Rightarrow T_{tr} \\
\Rightarrow \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs}e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}} \\
\]

- Computing $\{\gamma_i\}$ takes $O(n)$ time
- Rest operation takes $O(1)$ time

\[T^* = T_{obs}^* + T_{tr} \Rightarrow \pi^* = (t_1^*, ..., t_n^*)\]
Minimizing $J_2(\pi)$ and the Algorithmic Perspective

\[
\begin{aligned}
\{\lambda_i\} \Rightarrow \gamma_i & := \frac{1}{\lambda_i \sum_{j=1}^{n} \frac{1}{\lambda_j}} \\
\{\tau_{ij}\} \Rightarrow T_{tr} & \Rightarrow \mathbb{E}[T_i(\pi)] = \frac{2}{\lambda_i} - \frac{T_{obs} + T_{tr} + \gamma_i T_{obs} - \gamma_i T_{obs} e^{-\lambda_i \gamma_i T_{obs}}}{1 - e^{-\lambda_i \gamma_i T_{obs}}} \\
\end{aligned}
\]

- Computing $\{\gamma_i\}$ takes $O(n)$ time
- Rest operation takes $O(1)$ time
- Incremental computation takes $O(\log n)$ time

\[T^* = T_{obs}^* + T_{tr} \Rightarrow \pi^* = (t_1^*, \ldots, t_n^*)\]
Conclusion and Future Work

Summary of contribution
- Introduced a persistent monitoring problem of events with stochastic arrival
- Fully characterized a multi-objective optimization problem to allow efficient computation of the optimal cyclic patrolling policy
- Convergence rate, robustness, global uniqueness of solution

Future research
- Feedback-based policies (onboard data processing v.s. off-line)
- General traveling topology (in addition to cycle graphs)
- Information theoretic approach