Distance Optimal Target Assignment in Robotic Networks under Communication and Sensing Constraints

Jingjin Yu
CSAIL @ MIT/MechE @ BU

Soon-Jo Chung
AE @ University of Illinois

Petros G. Voulgaris

Supported by:
The Stochastic Target Assignment Problem
The Stochastic Target Assignment Problem

\[Q = [0,1] \times [0,1] \]
The Stochastic Target Assignment Problem

\[X = \{x_1, \ldots, x_n\} \]

\[Q = [0,1] \times [0,1] \]
The Stochastic Target Assignment Problem

\[X = \{x_1, \ldots, x_n\} \]
\[Y = \{y_1, \ldots, y_n\} \]

\[Q = [0,1] \times [0,1] \]
The Stochastic Target Assignment Problem

\[Q = [0,1] \times [0,1] \]

- \(X = \{x_1, \ldots, x_n\} \)
- \(Y = \{y_1, \ldots, y_n\} \)

Control: \(\dot{x}_i = u_i, \|u_i\| = 1 \)
The Stochastic Target Assignment Problem

\[Q = [0,1] \times [0,1] \]

- \(X = \{x_1, \ldots, x_n\} \)
- \(Y = \{y_1, \ldots, y_n\} \)

Control: \(\dot{x}_i = u_i, \|u_i\| = 1 \)

\(\sigma \): permutation that pairs \(x_i \) with \(y_{\sigma(i)} \)
The Stochastic Target Assignment Problem

\[Q = [0,1] \times [0,1] \]

- \(X = \{x_1, \ldots, x_n\} \)
- \(Y = \{y_1, \ldots, y_n\} \)

Control: \(\dot{x}_i = u_i, \|u_i\| = 1 \)

\(\sigma \): permutation that pairs \(x_i \) with \(y_{\sigma(i)} \)

\[
\min_{\sigma, \{u_i\}} D_n = \sum_i \int |\dot{x}_i(t)|dt
\]
The Stochastic Target Assignment Problem, cont.

r_{sense}

r_{comm}
The Stochastic Target Assignment Problem, cont.

\[r_{sense} \]

\[r_{comm} \]

\[G(t) \]
Given r_{sense} and r_{comm}, how can we guarantee distance optimality?
The Stochastic Target Assignment Problem, cont.

? Given r_{sense} and r_{comm}, how can we guarantee distance optimality?
? Performance of decentralized, hierarchical strategies (algorithms)?
Related Work

Related Work

Related Work

Penrose, **Random Geometric Graphs**, 2003
Related Work

Penrose, Random Geometric Graphs, 2003

Related Work

Penrose, **Random Geometric Graphs**, 2003

Main Result

Distance optimality guarantee
Main Result

Distance optimality guarantee
⇒ Necessary and sufficient condition for distance optimality (non-stochastic)
Main Result

Distance optimality guarantee

⇒ Necessary and sufficient condition for distance optimality (non-stochastic)
⇒ Non-asymptotic \((1 - \epsilon)\) probabilistic guarantee for \(0 < \epsilon < 1\)

\[
n \geq \begin{cases}
\left[\frac{\sqrt{2}}{r_{\text{sense}}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{2}}{r_{\text{sense}}} \right]^2 \right), & r_{\text{sense}} < \frac{\sqrt{10} r_{\text{comm}}}{5} \\
\left[\frac{\sqrt{5}}{r_{\text{comm}}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{\text{comm}}} \right]^2 \right), & r_{\text{sense}} \geq \frac{\sqrt{10} r_{\text{comm}}}{5}
\end{cases}
\]
Main Result

Distance optimality guarantee

\(\Rightarrow\) Necessary and sufficient condition for distance optimality (non-stochastic)

\(\Rightarrow\) Non-asymptotic \((1 - \epsilon)\) probabilistic guarantee for \(0 < \epsilon < 1\)

\[
\begin{align*}
 n \geq & \left\lceil \frac{\left\lceil \sqrt{2} \right\rceil^2 \log \left(\frac{1}{\epsilon} \left\lceil \frac{\sqrt{2}}{r_{\text{sense}}} \right\rceil^2 \right)}{r_{\text{sense}}} \right\rceil, & r_{\text{sense}} < \frac{\sqrt{10} r_{\text{comm}}}{5} \\
 n \geq & \left\lceil \frac{\left\lceil \sqrt{5} \right\rceil^2 \log \left(\frac{1}{\epsilon} \left\lceil \frac{\sqrt{5}}{r_{\text{comm}}} \right\rceil^2 \right)}{r_{\text{comm}}} \right\rceil, & r_{\text{sense}} \geq \frac{\sqrt{10} r_{\text{comm}}}{5}
\end{align*}
\]

\(\Rightarrow\) Tight asymptotic bounds for high-probability guarantee

Performance of decentralized, hierarchical strategies

\(\Rightarrow\) Upper bound on the distance cost for arbitrary robot/target distribution
Main Result

Distance optimality guarantee
⇒ Necessary and sufficient condition for distance optimality (non-stochastic)
⇒ Non-asymptotic \((1 - \epsilon)\) probabilistic guarantee for \(0 < \epsilon < 1\)

\[
n \geq \begin{cases}
\left(\frac{\sqrt{2}}{r_{\text{sense}}}\right)^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{2}}{r_{\text{sense}}}\right]^2\right), & r_{\text{sense}} < \frac{\sqrt{10} r_{\text{comm}}}{5} \\
\left(\frac{\sqrt{5}}{r_{\text{comm}}}\right)^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{\text{comm}}}\right]^2\right), & r_{\text{sense}} \geq \frac{\sqrt{10} r_{\text{comm}}}{5}
\end{cases}
\]

⇒ Tight asymptotic bounds for high-probability guarantee

Performance of decentralized, hierarchical strategies
⇒ Upper bound on the distance cost for arbitrary robot/target distribution
⇒ \(O(1)\) asymptotic optimality guarantee under the uniform distribution
Theorem (Necessary and Sufficient Conditions for Distance Optimality).
Under sensing and communication constraints, distance optimality can be guaranteed if and only if at $t = 0$,
1. Every robot can communicate with every other robot,
2. Each target is observable by some robot.
Theorem (Necessary and Sufficient Conditions for Distance Optimality). Under sensing and communication constraints, distance optimality can be guaranteed if and only if at $t = 0$,

1. Every robot can communicate with every other robot,
2. Each target is observable by some robot.
Distance Optimality Guarantee

Theorem (Necessary and Sufficient Conditions for Distance Optimality). Under sensing and communication constraints, distance optimality can be guaranteed if and only if at $t = 0$,

1. Every robot can communicate with every other robot,
2. Each target is observable by some robot.
Theorem (Necessary and Sufficient Conditions for Distance Optimality). Under sensing and communication constraints, distance optimality can be guaranteed if and only if at $t = 0$,

1. Every robot can communicate with every other robot,
2. Each target is observable by some robot.
Non-Asymptotic Optimality Guarantee
Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \right).$$
Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \right).$$
Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \right).$$
Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \right).$$
Lemma. Given r_{comm} and fixing $0 < \varepsilon < 1$, $G(0)$ is connected with probability at least $1 - \varepsilon$ if

$$n \geq \left\lceil \frac{\sqrt{5}}{r_{comm}} \right\rceil^2 \log \left(\frac{1}{\varepsilon} \left\lceil \frac{\sqrt{5}}{r_{comm}} \right\rceil^2 \right).$$

$$P(n_i = 0) = \left(1 - \frac{1}{m}\right)^n$$

$$\sqrt{m} = \lceil \frac{\sqrt{5}}{r_{comm}} \rceil$$
Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left(\frac{\sqrt{5}}{r_{comm}}\right)^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{comm}}\right]^2\right).$$

$$P(n_i = 0) = \left(1 - \frac{1}{m}\right)^n < e^{-\frac{n}{m}}$$
Non-Asymptotic Optimality Guarantee

Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left[\frac{\sqrt{5}}{r_{\text{comm}}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{\text{comm}}} \right]^2 \right).$$

$$P(n_i = 0) = \left(1 - \frac{1}{m} \right)^n < e^{-\frac{n}{m}}$$

$$P \left(\bigcup_{i=1}^{m} E(n_i = 0) \right) \leq \sum_{i=1}^{m} P(n_i = 0)$$

$$\sqrt{m} = \left[\frac{\sqrt{5}}{r_{\text{comm}}} \right]$$
Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left(\frac{\sqrt{5}}{r_{\text{comm}}}\right)^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{\text{comm}}}\right]^2\right).$$

$$\begin{align*}
P(n_i = 0) &= \left(1 - \frac{1}{m}\right)^n < e^{-\frac{n}{m}} \\
P\left(\bigcup_{i=1}^{m} E(n_i = 0)\right) &\leq \sum_{i=1}^{m} P(n_i = 0) < me^{-\frac{n}{m}}
\end{align*}$$
Non-Asymptotic Optimality Guarantee

Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \right).$$

$$P(n_i = 0) = \left(1 - \frac{1}{m}\right)^n < e^{-\frac{n}{m}}$$

$$P \left(\bigcup_{i=1}^{m} E(n_i = 0) \right) \leq \sum_{i=1}^{m} P(n_i = 0) < me^{-\frac{n}{m}} = \epsilon$$

$$\sqrt{m} = \lceil \frac{\sqrt{5}}{r_{comm}} \rceil$$
Non-Asymptotic Optimality Guarantee

Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left(\frac{\sqrt{5}}{r_{comm}}\right)^2 \log \left(\frac{1}{\epsilon} \left(\frac{\sqrt{5}}{r_{comm}}\right)^2\right).$$

Theorem (Random Geometric Graphs [Penrose ’97]). For n uniformly distributed nodes in the unit square, let $G(0)$ be the communication graph for a given r_{comm} at $t = 0$. Then for any real number c, as $n \to \infty$ (i.e., $r_{comm} \to 0$),

$$P(G \text{ is connected} \mid \pi n r_{comm}^2 - \log n \leq c) = e^{-e^c}.$$

Theorem [Xue & Kumar ‘04]. For n uniformly distributed nodes in the unit square, the network is asymptotically connected if and only if each node has $\Theta(\log n)$ neighbors.
Lemma. Given r_{comm} and fixing $0 < \epsilon < 1$, $G(0)$ is connected with probability at least $1 - \epsilon$ if

$$n \geq \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \log \left(\frac{1}{\epsilon} \left[\frac{\sqrt{5}}{r_{comm}} \right]^2 \right).$$

Theorem (Random Geometric Graphs [Penrose ‘97]). For n uniformly distributed nodes in the unit square, let $G(0)$ be the communication graph for a given r_{comm} at $t = 0$. Then for any real number c, as $n \to \infty$ (i.e., $r_{comm} \to 0$),

$$P(G \text{ is connected} \mid \pi n r_{comm}^2 - \log n \leq c) = e^{-e^c}.$$

Theorem [Xue & Kumar ‘04]. For n uniformly distributed nodes in the unit square, the network is asymptotically connected if and only if each node has $\Theta(\log n)$ neighbors.
Theorem (Non-Asymptotic Bounds) Fixing $0 < \varepsilon < 1$, robots can communicate with each other and all targets are observable at $t = 0$ with probability at least $1 - \varepsilon$ when

$$n \geq \begin{cases} \frac{\sqrt{2}}{r_{\text{sense}}} \log \left(\frac{1}{\varepsilon} \frac{\sqrt{2}}{r_{\text{sense}}} \right), & r_{\text{sense}} < \frac{\sqrt{10} r_{\text{comm}}}{5} \\ \frac{\sqrt{5}}{r_{\text{comm}}} \log \left(\frac{1}{\varepsilon} \frac{\sqrt{5}}{r_{\text{comm}}} \right), & r_{\text{sense}} \geq \frac{\sqrt{10} r_{\text{comm}}}{5} \end{cases}$$
Theorem (Non-Asymptotic Bounds) Fixing $0 < \epsilon < 1$, robots can communicate with each other and all targets are observable at $t = 0$ with probability at least $1 - \epsilon$ when

$$n \geq \begin{cases} \left(\frac{\sqrt{2}}{r_{\text{sense}}} \right)^2 \log \left(\frac{1}{\epsilon} \left(\frac{\sqrt{2}}{r_{\text{sense}}} \right)^2 \right), & r_{\text{sense}} < \frac{\sqrt{10}r_{\text{comm}}}{5} \\ \left(\frac{\sqrt{5}}{r_{\text{comm}}} \right)^2 \log \left(\frac{1}{\epsilon} \left(\frac{\sqrt{5}}{r_{\text{comm}}} \right)^2 \right), & r_{\text{sense}} \geq \frac{\sqrt{10}r_{\text{comm}}}{5} \end{cases}$$

$n = \Theta(-\frac{1}{r_{\text{comm}}^2} \log r_{\text{comm}})$ is **sufficient** and **necessary** for high probability asymptotic guarantee on the connectivity of $G(0)$.
An Ideal Hierarchical Strategy
An Ideal Hierarchical Strategy

Ideal: r_{comm}, r_{sense} as large as needed
An Ideal Hierarchical Strategy

Ideal: $r_{\text{comm}}, r_{\text{sense}}$ as large as needed

Hierarchical: The unit square is partitioned into m small squares (here, $m = 4$)
An Ideal Hierarchical Strategy

Ideal: $r_{\text{comm}}, r_{\text{sense}}$ as large as needed

Hierarchical: The unit square is partitioned into m small squares (here, $m = 4$)

$\frac{1}{\sqrt{m}}$
An Ideal Hierarchical Strategy

Ideal: r_{comm}, r_{sense} as large as needed

Hierarchical: The unit square is partitioned into m small squares (here, $m = 4$)
An Ideal Hierarchical Strategy

Ideal: $r_{\text{comm}}, r_{\text{sense}}$ as large as needed

Hierarchical: The unit square is partitioned into m small squares (here, $m = 4$)
An Ideal Hierarchical Strategy

Ideal: $r_{\text{comm}}, r_{\text{sense}}$ as large as needed

Hierarchical: The unit square is partitioned into m small squares (here, $m = 4$)
Bounding Distance Cost at Lower Hierarchy

\[\frac{1}{\sqrt{m}} \]
Bounding Distance Cost at Lower Hierarchy

\[
\frac{1}{\sqrt{m}}
\]
Bounding Distance Cost at Lower Hierarchy

\[q_i \]

\[\frac{1}{\sqrt{m}} \]
Theorem [Talagrand ‘92] Let \(X = \{x_1, \ldots, x_n\}, Y = \{y_1, \ldots, y_n\} \) be two sets sampled i. i. d. from the same arbitrary distribution on \([0,1]^2\). Then

\[
E \left[\min_{\sigma} \sum_{i=1}^{n} |x_i - y_{\sigma(i)}| \right] \leq C \sqrt{n \log n},
\]

in which \(C \) is a universal constant.
Bounding Distance Cost at Lower Hierarchy

Theorem [Talagrand ‘92] Let \(X = \{x_1, \ldots, x_n\}, Y = \{y_1, \ldots, y_n\} \) be two sets sampled i. i. d. from the same arbitrary distribution on \([0,1]^2\). Then

\[
E[D_i] \leq \frac{C}{\sqrt{m}} \sqrt{n_i \log n_i}
\]

in which \(C \) is a universal constant.
Theorem [Talagrand ‘92] Let $X = \{x_1, \ldots, x_n\}, Y = \{y_1, \ldots, y_n\}$ be two sets sampled i.i.d. from the same arbitrary distribution on $[0,1]^2$. Then

$$E \left[\min_\sigma \sum_{i=1}^{n} |x_i - y_{\sigma(i)}| \right] \leq C \sqrt{n \log n},$$

in which C is a universal constant.
Bounding Distance Cost at Lower Hierarchy

Theorem [Talagrand ’92] Let \(X = \{x_1, \ldots, x_n\}, Y = \{y_1, \ldots, y_n\} \) be two sets sampled \(i. i. d. \) from the same arbitrary distribution on \([0,1]^2\). Then

\[
E[D_i] \leq \frac{C}{\sqrt{m}} \sqrt{n_i \log n_i}
\]

\[
\sum_{i=1}^{m} E[D_i] \leq C \sqrt{m} \sum_{i=1}^{m} \frac{1}{m} \sqrt{n_i \log n_i}
\]

\[
\leq C \sqrt{m} \sqrt{\frac{\sum_i n_i}{m} \log \frac{\sum_i n_i}{m}} \leq C \sqrt{n \log n}
\]

in which \(C \) is a universal constant.
Bounding Distance Cost at Higher Hierarchy

q_i
Bounding Distance Cost at Higher Hierarchy

q_i
Bounding Distance Cost at Higher Hierarchy

\[P(x_j \in q_i) = P(y_j \in q_i) = p_i \]
Bounding Distance Cost at Higher Hierarchy

\[P(x_j \in q_i) = P(y_j \in q_i) = p_i \]

\[P(x_j \in q_i, y_j \notin q_i) = P(x_j \notin q_i, y_j \in q_i) = p_i(1 - p_i) \]
Bounding Distance Cost at Higher Hierarchy

\[P(x_j \in q_i) = P(y_j \in q_i) = p_i \]

\[P(x_j \in q_i, y_j \notin q_i) = P(x_j \notin q_i, y_j \in q_i) = p_i(1 - p_i) \]

\[Z_j = \begin{cases}
-1, & x_j \notin q_i, y_j \in q_i \\
1, & x_j \in q_i, y_j \notin q_i, \\
0, & \text{otherwise}
\end{cases} \]
Bounding Distance Cost at Higher Hierarchy

\[P(x_j \in q_i) = P(y_j \in q_i) = p_i \]

\[P(x_j \in q_i, y_j \notin q_i) = P(x_j \notin q_i, y_j \in q_i) = p_i(1 - p_i) \]

\[Z_j = \begin{cases}
-1, & x_j \notin q_i, y_j \in q_i \\
1, & x_j \in q_i, y_j \notin q_i, \\
0, & \text{otherwise}
\end{cases} \]

\[S_i = Z_1 + \cdots + Z_n \]
Bounding Distance Cost at Higher Hierarchy

\[P(x_j \in q_i) = P(y_j \in q_i) = p_i \]

\[P(x_j \in q_i, y_j \notin q_i) = P(x_j \notin q_i, y_j \in q_i) = p_i(1 - p_i) \]

\[Z_j = \begin{cases}
-1, & x_j \notin q_i, y_j \in q_i \\
1, & x_j \in q_i, y_j \notin q_i, \\
0, & \text{otherwise}
\end{cases} \]

\[S_i = Z_1 + \cdots + Z_n \]

\[E[S_i^2] = nE[Z_j^2] = 2np_i(1 - p_i) \]
Bounding Distance Cost at Higher Hierarchy

\[P(x_j \in q_i) = P(y_j \in q_i) = p_i \]

\[P(x_j \in q_i, y_j \notin q_i) = P(x_j \notin q_i, y_j \in q_i) = p_i(1 - p_i) \]

\[Z_j = \begin{cases}
-1, & x_j \notin q_i, y_j \in q_i \\
1, & x_j \in q_i, y_j \notin q_i, \\
0, & \text{otherwise}
\end{cases} \]

\[S_i = Z_1 + \cdots + Z_n \]

\[E[S_i^2] = nE[Z_j^2] = 2np_i(1 - p_i) \]

\[E[|S_i|] = E\left[\sqrt{S_i^2}\right] \leq \sqrt{E[S_i^2]} \]
Bounding Distance Cost at Higher Hierarchy

\[
P(x_j \in q_i) = P(y_j \in q_i) = p_i
\]

\[
P(x_j \in q_i, y_j \notin q_i) = P(x_j \notin q_i, y_j \in q_i) = p_i(1 - p_i)
\]

\[
Z_j = \begin{cases}
-1, & x_j \notin q_i, y_j \in q_i \\
1, & x_j \in q_i, y_j \notin q_i \\
0, & \text{otherwise}
\end{cases}
\]

\[
S_i = Z_1 + \cdots + Z_n
\]

\[
E[S_i^2] = nE[Z_j^2] = 2np_i(1 - p_i)
\]

\[
E[|S_i|] = E\left[\sqrt{S_i^2}\right] \leq \sqrt{E[S_i^2]}
\]

\[
\Rightarrow \quad E[|S_i|] \leq \sqrt{2np_i(1 - p_i)}
\]
Bounding Distance Cost at Higher Hierarchy

\[P(x_j \in q_i) = P(y_j \in q_i) = p_i \]

\[P(x_j \in q_i, y_j \notin q_i) = P(x_j \notin q_i, y_j \in q_i) = p_i(1 - p_i) \]

\[Z_j = \begin{cases}
-1, & x_j \notin q_i, y_j \in q_i \\
1, & x_j \in q_i, y_j \notin q_i, \quad S_i = Z_1 + \cdots + Z_n \\
0, & \text{otherwise}
\end{cases} \]

\[E[S_i^2] = nE[Z_j^2] = 2np_i(1 - p_i) \]

\[E[|S_i|] = E\left[\sqrt{S_i^2}\right] \leq \sqrt{E[S_i^2]} \]

\[\sum_{i=1}^{m} E[|S_i|] = \sum_{i=1}^{m} \sqrt{2np_i(1 - p_i)} = m\sqrt{2n} \sum_{i=1}^{m} \frac{1}{m} \sqrt{p_i(1 - p_i)} \]
Bounding Distance Cost at Higher Hierarchy

\[P(x_j \in q_i) = P(y_j \in q_i) = p_i \]

\[P(x_j \in q_i, y_j \notin q_i) = P(x_j \notin q_i, y_j \in q_i) = p_i(1 - p_i) \]

\[Z_j = \begin{cases}
-1, & x_j \notin q_i, y_j \in q_i \\
1, & x_j \in q_i, y_j \notin q_i \\
0, & \text{otherwise}
\end{cases} \]

\[S_i = Z_1 + \cdots + Z_n \]

\[E[S_i^2] = nE[Z_j^2] = 2np_i(1 - p_i) \]

\[E[|S_i|] = E\left[\sqrt{S_i^2}\right] \leq \sqrt{E[S_i^2]} \]

\[\sum_{i=1}^{m} E[|S_i|] = \sum_{i=1}^{m} \sqrt{2np_i(1 - p_i)} = m\sqrt{2n} \sum_{i=1}^{m} \frac{1}{m} \sqrt{p_i(1 - p_i)} \]

\[\leq m\sqrt{2n} \sqrt{\frac{\sum_{i=1}^{m} p_i}{m} \left(1 - \frac{\sum_{i=1}^{m} p_i}{m}\right)} = \sqrt{2n(m - 1)} \]
Theorem (Performance Upper-Bound of Ideal Hierarchical Strategies) Let D_n be the total distance of an ideal hierarchical strategy with h hierarchies and m_i regions at hierarchy i, then for arbitrary distribution on $[0,1]^2$,

$$E[D_n] \leq C \sqrt{n \log n} + 2\sqrt{n} \sum_{i=1}^{h-1} \sqrt{\frac{m_{i+1}}{m_i}}.$$
Bounds on Distance Optimality

Theorem (Performance Upper-Bound of Ideal Hierarchical Strategies) Let D_n be the total distance of an ideal hierarchical strategy with h hierarchies and m_i regions at hierarchy i, then for arbitrary distribution on $[0,1]^2$,

$$E[D_n] \leq C \sqrt{n \log n} + 2 \sqrt{n} \sum_{i=1}^{h-1} \sqrt{\frac{m_{i+1}}{m_i}}.$$

Theorem [Ajtai et al. ‘84]. Under the uniform distribution, with high probability, $C_1 \sqrt{n \log n} \leq D^*_n \leq C_2 \sqrt{n \log n}$.

Theorem (Performance Upper-Bound of Ideal Hierarchical Strategies) Let D_n be the total distance of an ideal hierarchical strategy with h hierarchies and m_i regions at hierarchy i, then for arbitrary distribution on $[0,1]^2$,

$$E[D_n] \leq C \sqrt{n \log n} + 2 \sqrt{n} \sum_{i=1}^{h-1} \sqrt{\frac{m_{i+1}}{m_i}}.$$

Theorem [Ajtai et al. ‘84]. Under the uniform distribution, with high probability, $C_1 \sqrt{n \log n} \leq D_n^* \leq C_2 \sqrt{n \log n}$.

Corollary. With uniform distribution, fixing h and $\{m_i\}$, as $n \to \infty$,

$$\frac{E[D_n]}{E[D_n^*]} \to O(1).$$
Corollary. With uniform distribution, fixing h and $\{m_i\}$, as $n \to \infty$,

$$\frac{E[D_n]}{E[D^*_n]} \to O(1).$$
Incorporating Arbitrary r_{comm} and r_{sense}
Incorporating Arbitrary r_{comm} and r_{sense}
Incorporating Arbitrary r_{comm} and r_{sense}

Two-level decentralized hierarchical strategy

Two-level ideal hierarchical strategy

D_n/D^* vs n - number of robots

$m^2 = 81$
$m^2 = 256$
$m^2 = 625$
$m^2 = 1296$

D_n/D^* vs n - number of robots

$r_{comm} = 0.16$
$r_{comm} = 0.09$
$r_{comm} = 0.057$
$r_{comm} = 0.004$
Incorporating Arbitrary r_{comm} and r_{sense}

- Two-level decentralized hierarchical strategy
- Arbitrary r_{sense} can also be handled similarly.

Two-level ideal hierarchical strategy

Two-level decentralized hierarchical strategy
Summary of Contribution

- Guarantee on the distance optimality of the stochastic target assignment problem
 - Necessary and sufficient condition for optimality
 - Non-asymptotic probabilistic bounds
 - Asymptotically tight bounds for high-probability guarantee
- Performance of decentralized hierarchical strategies
 - General upper bounds for arbitrary distributions
 - $O(1)$ approximation algorithm for the uniform distribution
- Important takeaway: **locally** optimal behavior leads to near *globally* optimal behavior