Efficient Algorithms for Optimal Perimeter Guarding

Si Wei Feng*, Shuai D. Han*, Kai Gao† and Jingjin Yu*

*Department of Computer Science, Rutgers University at New Brunswick, Piscataway, New Jersey, U.S.A.
† School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China

Abstract—We investigate the problem of optimally assigning a large number of robots (or other types of autonomous agents) to guard the perimeters of closed 2D regions, where the perimeter of each region to be guarded may contain multiple disjoint polygonal chains. Each robot is responsible for guarding a subset of a perimeter and any point on a perimeter must be guarded by some robot. In allocating the robots, the main objective is to minimize the maximum 1D distance to be covered by any robot along the boundary of the regions. For this optimization problem which we call optimal perimeter guarding (OPG), thorough structural analysis is performed, which is then exploited to develop fast exact algorithms that run in guaranteed low polynomial time. In addition to formal analysis and proofs, experimental evaluations and simulations are performed that further validate the correctness and effectiveness of our algorithmic results.

I. INTRODUCTION

Consider the scenario from Fig. 1, which contains a closed region with its boundary or border demarcated by the red and dotted blue polygonal chains (p-chains for short). To secure the region, either from intrusions from the outside or unwanted escapes from within, it is desirable to deploy a number of autonomous robots to monitor or guard either the entire boundary or selected portions of it, e.g., the three red p-chains, with each robot responsible for a continuous section. Naturally, one might also want to have an even coverage by the robots, e.g., minimizing the maximum effort from any robot. In practice, such effort may correspond to sensing ranges or motion capabilities of robots, which are always limited. As an intuitive example, the figure may represent the top view of a castle with its entire boundary being a high wall on which robots may travel. The portion of the wall marked with the three red p-chains must be protected whereas the part marked by the dotted blue p-chains may not need active monitoring (e.g., the outside of which may be a cliff or a body of deep water). The green and orange p-chains show an optimal distribution of the workload by 8 robots that covers all red p-chains but skips two of the three blue dotted p-chains.

More formally we study the problem of deploying a large number of robots to guard a set of 1D perimeters. Each perimeter is comprised of one or more 1D (p-chain) segments that are part of a circular boundary (e.g., the red p-chains in Fig. 1). Each robot is tasked to guard a continuous 1D p-chain that covers a portion of a perimeter. As the main objective, we seek an allocation of robots such that (i) the union of the robots’ coverage encloses all perimeters and (ii) the maximum coverage of any robot is minimized. We call this 1D deployment problem the Optimal Perimeter Guarding (OPG) problem.

In this work, three main OPG variants are examined. The settings regarding the perimeter in these three variants are: (i) multiple perimeters with each having a single connected component; (ii) a single perimeter containing multiple connected components; and (iii) multiple perimeters with each containing multiple connected components (the most general case). For all three variants, we have developed exact algorithms for solving OPG that runs in low polynomial time. More specifically, let there be n robots, m perimeters, with perimeter $i (1 \leq i \leq m)$ containing q_i connected components. If $m = 1$, then let the only perimeter contains q connected components. For the three variants, our algorithm computes an optimal solution in time $O((m \log n + \log m) + n)$, $O(q^2 \log(n + q) + n)$, and $O((\sum_{1 \leq i \leq m} q_i^2) \log(n + \sum_{1 \leq i \leq m} q_i) + n)$, respectively, which are roughly quadratic in the worst case. The modeling of the OPG problem and the development of the efficient algorithms for OPG constitute the main contribution of this paper.

With an emphasis on the deployment of a large number of robots, within multi-robot systems research [1]–[4], our study is closely related to formation control, e.g., [5]–[11], where the goal is to achieve certain distributions through continuous (often, local sensing based) interactions among the agents or robots. Depending on the particular setting, the distribution in question may be spatial, e.g., rendezvous [5], [11], or maybe an agreement in agent velocity is sought [6], [8]. In these studies, the resulting formation often has some degree-of-freedoms left unspecified. For example, rendezvous results [5], [11] often come with exponential convergence guarantee, but the location of rendezvous is generally unknown a priori.

On the other hand, in multi-robot task and motion planning problems (e.g., [12]–[19]), especially ones with a task allocation element [12], [14]–[17], [19], the (permutation-invariant) target configuration is often mostly known. The goal here is finding a one-to-one mapping between individual robots and the target locations (e.g., deciding a matching) and
then plan (possibly collision-free) trajectories for the robots to reach their respective assigned targets \([16], [17], [19]\). In contrast to formation control and multi-robot motion planning research, our study of OPG seeks to determine an exact, optimal distribution pattern of robots (in this case, over a fairly arbitrary, bounded 1D topological domain). Thus, solutions to OPG may serve as the target distributions for multi-robot task and motion planning, which is the main motivation behind our work. The generated distribution pattern is also potentially useful in multi-robot persistent monitoring \([20]\) and coverage \([21], [22]\) applications, where robots are asked to carry out sensing tasks in some optimal manner.

As a multi-robot coverage problem, OPG is intimately connected to Art Gallery problems \([23], [24]\), with origins traceable to half a century ago \([25]\). Art Gallery problems assume a visibility-based \([26]\) sensing model; in a typical setup \([23]\), the interior of a polygon must be visible to at least one of the guards, which may be placed on the boundaries, corners, or the interior of the polygon. Finding the optimal number of guards are often NP-hard \([27]\). Alternatively, disc-based sensing model may be used, which leads to the classical packing problem \([28], [29]\), where no overlap is allowed between the sensors’ coverage area, the coverage problem \([30]–[34]\), where all workspace must be covered with overlaps allowed, or the tiling problem \([35]\), where the goal is to have the union of sensing ranges span the entire workspace without overlap. For a more complete account on Art Gallery, packing, and covering, see Chapters 2, 3, and 33 of \([36]\). Despite the existence of a large body of literature performing extensive studies on these intriguing computational geometry problems, these types of research mostly address domains that are 2D and higher. To our knowledge, OPG, as an optimal coverage problem over a non-trivial 1D topological space, represents a practical and novel formulation yet to be fully investigated.

The rest of the paper is organized as follows. The OPG problem and some of its most basic properties are described in Section II. In Section III, a thorough structural analysis of OPG with single and multiple perimeters is performed, paving the way for introducing the full algorithmic solutions in Section IV. Then, in Section V, comprehensive numerical evaluations of the multiple polynomial-time algorithms are carried out. In addition, two realistic application scenarios are demonstrated. In Section VI, we conclude with additional discussions.

II. THE OPTIMAL PERIMETER GUARDING PROBLEM

Let \(W \subset \mathbb{R}^2\) be a compact (i.e., closed and bounded) two-dimensional workspace. There are \(m\) pairwise disjoint regions \(\mathcal{R} = \{R_1, \ldots, R_m\}\) where each region \(R_i \subset W\) is homeomorphic to the closed unit disc, i.e., there exists a continuous bijection \(f_i : R_i \rightarrow \{(x, y) \mid x^2 + y^2 \leq 1\}\) for all \(1 \leq i \leq m\). For a given region \(R_i\), let \(\partial R_i\) be its (closed) boundary (therefore, \(f_i\) maps \(\partial R_i\) to the unit circle \(S^1\)). With a slight abuse of notation, define \(\partial \mathcal{R} = \{\partial R_1, \ldots, \partial R_m\}\). For each \(R_i, P_i \subset \partial R_i\) is called the perimeter of \(R_i\) which is either a single closed curve or formed by a finite number of possibly curved line segments. In this paper, we assume a perimeter is given as a single \(p\)-chain (possibly a polygon) or multiple disjoint \(p\)-chains. Let \(\mathcal{P} = \{P_1, \ldots, P_m\}\), which must be guarded. More formally, each \(P_i\) is homeomorphic to a compact subset of the unit circle. For a given \(P_i\), each of its maximal connected component (a \(p\)-chain) is called a perimeter segment or segment, whereas each maximal connected component of \(\partial R_i \setminus P_i\) is called a perimeter gap or gap. An example is illustrated in Fig. 2 with two regions.

![Fig. 2: An example of a workspace \(W\) with two regions \(\{R_1, R_2\}\). Due to three gaps on \(\partial R_1\), marked as dotted lines within long rectangles, \(P_1 \subset \partial R_1\) has three segments (or maximal connected components); \(P_2 = \partial R_2\) has a single segment with no gap.](image)

There are \(n\) indistinguishable point robots residing in \(W\). These robots are to be deployed to cover the perimeters \(\mathcal{P}\) such that each robot \(1 \leq j \leq n\) is assigned a continuous closed subset \(C_j\) of some \(\partial R_i, 1 \leq i \leq m\). All of \(\mathcal{P}\) must be covered by \(\mathcal{C} = \{C_1, \ldots, C_n\}\), i.e., \(\bigcup_{P_i \in \mathcal{P}} P_i \subset \bigcup_{C_j \in \mathcal{C}} C_j\), which implies that elements of \(\mathcal{C}\) need not intersect on their interiors. Hence, it is assumed that any two elements of \(\mathcal{C}\) may share at most their endpoints. Such a \(\mathcal{C}\) is called a cover of \(\mathcal{P}\).

Given a cover \(\mathcal{C}\), for a \(C_j \in \mathcal{C}, 1 \leq j \leq n\), let \(\text{len}(C_j)\) denote its length (more formally, measure). It is desirable to minimize the maximum \(\text{len}(C_j)\), i.e., the goal is to find a cover \(\mathcal{C}\) such that the value \(\max_{C_j \in \mathcal{C}} \text{len}(C_j)\) is minimized. This corresponds to minimizing the maximum workload for each robot or agent. The formal definition of the Optimal Perimeter Guarding (OPG) problem is provided as follows.

Problem 1 (Optimal Perimeter Guarding (OPG)). Given the perimeter \(\mathcal{P} = \{P_1, \ldots, P_m\}\) of a set of 2D regions \(\mathcal{R} = \{R_1, \ldots, R_m\}\), find a set of \(n\) polygonal chains \(\mathcal{C}^* = \{C_1^*, \ldots, C_n^*\}\) such that \(\mathcal{C}^*\) covers \(\mathcal{P}\), i.e.,

\[
\bigcup_{P_i \in \mathcal{P}} P_i \subset \bigcup_{C_j \in \mathcal{C}^*} C_j^*,
\]

with the maximum of \(\text{len}(C_j^*), 1 \leq j \leq n\) minimized, i.e., among all covers \(\mathcal{C}\) satisfying (1),

\[
\mathcal{C}^* = \arg\min_{\mathcal{C}} \max_{C_j \in \mathcal{C}} \text{len}(C_j).
\]

Here, we introduce the technical assumption that the ratio between the length of \(\partial \mathcal{R}\) and the length of \(\partial \mathcal{P}\) is polynomial in the input parameters. That is, the length of \(\partial \mathcal{R}\) is not much larger than the length of \(\partial \mathcal{P}\). The assumption makes intuitive sense as any gap should not be much larger than the perimeter in practice. We note that the assumption is not strictly necessary but helps simplify the correctness proof of some algorithms.

Henceforth, in general, \(\mathcal{C}^*\) is used when an optimal cover is meant whereas \(\mathcal{C}\) is used when a cover is meant. We further
define the optimal single robot coverage length as
\[\ell^* = \min_{C} \max_{C_j \in C} \text{len}(C_j). \] (3)

Fig. 1 shows an example of an optimal cover by 8 robots of a perimeter with three components. Note that one of the three gaps (the one on the top area as part of the hexagon) is fully covered by a robot, which leads to a smaller \(\ell^* \) as compared to other feasible solutions. This interesting phenomenon, which is actually a main source of the difficulty in solving OPG, is explored more formally in Section III (Proposition 3).

Given the OPG formulation, additional details on \(\partial R \) must be specified to allow the precise characterization of the computational complexity (of any algorithm developed for OPG). For this purpose, it is assumed that each \(\partial R_i \in \partial R \), \(1 \leq i \leq m \), is a simple (i.e., non-intersecting and without holes) polygon with an input complexity \(O(M_i) \), i.e., \(\partial R_i \) has about \(M_i \) vertices or edges. If an OPG has a single region \(R \), then let \(\partial R \) have an input complexity of \(M \). Note that the algorithms developed in this work apply to curved boundaries equally well, provided that the curves have similar input complexity and are given this work apply to curved boundaries equally well, provided that the curves have similar input complexity and are given.

For deploying a robot to guard a \(C_j \), one natural choice is to send the robot to a target location \(t_j \in C_j \) such that \(t_j \) is the centroid of \(C_j \). Since \(C_j \) is one dimensional, \(t_j \) is the center (or midpoint) of \(C_j \). After solving an OPG, there is the remaining problem of assigning the \(n \) robots to the centers of \(C^* = \{ C_j^* \} \) and actually moving the robots to these assigned locations. As a secondary objective, it may also be desirable to provide guarantees on the execution time required for deploying the robots to reach target guarding locations. We note that, the task assignment (after determining target locations) and motion planning component for handling robot deployment, essential for applications but not a key part of this work’s contribution, is briefly addressed in Section V.

With some \(C^* \) satisfying (1) and (2), we may further require that \(\text{len}(C_j^*) \) is minimized for all \(C_j^* \in C^* \). This means that a gap \(G \subset (\bigcup \partial R_i) \setminus (\bigcup P_i) \) will never be partially covered by some \(C_j^* \in C^* \). In the example from Fig. 2, \(G \) may be one of the gaps on \(\partial R_1 \); clearly, it is not beneficial to have some \(C_j^* \) partially cover (i.e., intersect the interior of) one of these. This rather useful condition (note that this is not an assumption but a solution property) yields the following lemma.

Lemma 1. For a set of perimeters \(\mathcal{P} = \{ P_1, \ldots, P_m \} \) where \(P_i \subset \partial R_i \) for \(1 \leq i \leq m \), there exists an optimal cover \(C^* = \{ C^*_1, \ldots, C^*_n \} \) such that, for any gap (or maximal connected component) \(G \subset (\bigcup \partial R_i) \setminus (\bigcup P_i) \) and any \(C_j^* \in C^* \), \(C_j^* \cap G = G \) or \(C_j^* \cap G = \emptyset \).

Remark. Our definition of coverage is but one of the possible models of coverage. The definition restricts a robot deployed to \(C_j, 1 \leq j \leq n \), to essentially live on \(C_j \). The definition models scenarios where a guarding robot must travel along \(C_j \), which is one-dimensional. Nevertheless, the algorithms developed for OPG have broader applications. For example, subroutines in our algorithms readily solve the problem of finding the minimum number of guards needed if each guard has a predetermined maximum coverage.

III. Structural Analysis

A. Guarding a Single Region

Perimeter with a single connected component. For guarding a single region \(R = \{ R \} \), i.e., there is a single boundary \(\partial R \) to be guarded, all \(n \) robots can be directly allocated to \(\partial R \). If the single perimeter \(P \subset \partial R \) further has a single connected component that is either homeomorphic to \(S^1 \) or \([0, 1] \), then each robot \(j \) can be assigned a piece \(C_j \subset P \) such that \(\bigcup_{C_j \in C} C_j = P \) and \(\text{len}(C_j) = \text{len}(P)/n \). Clearly, such a cover \(C \) is also an optimal cover.

Perimeter with multiple maximal connected components. When there are multiple maximal connected components (or segments) in a single perimeter \(P \), things become more complex. To facilitate the discussion, assume here \(P \) has \(q \) segments \(S_1, \ldots, S_q \) arranged in the clockwise direction (i.e., \(P = S_1 \cup \ldots \cup S_q \)), which leaves \(q \) gaps \(G_1, \ldots, G_q \) with \(G_k \) immediately following \(S_k \). Fig. 3 shows a perimeter with five segments and five gaps.

![Fig. 3: A perimeter with five segments \(S_1, \ldots, S_5 \) and five gaps \(G_1, \ldots, G_5 \).](image)

Suppose an optimal set of assignments for the \(n \) robots guarding \(P \) and satisfying (1) and (2) is \(C^* = \{ C_j^* \} \). Let \(G_{\text{max}} \) be a largest gap, i.e., \(\text{len}(G_{\text{max}}) = \max_{1 \leq k \leq q} \text{len}(G_k) \). Via small perturbations to the lengths of \(G_k \), we may also assume that \(G_{\text{max}} \) is unique. On one hand, it must hold that \(\text{len}(C_j^*) \leq (\text{len}(\partial R) - \text{len}(G_{\text{max}}))/n \), as a solution where \(n \) robots evenly cover all of \(\partial R \) with the gap \(G_{\text{max}} \) excluded, satisfies the condition. On the other hand, \(\sum_{1 \leq k \leq q} \text{len}(S_k) \) naturally holds because the coverage condition requires \(\sum C_j^* \geq \sum_{1 \leq k \leq q} \text{len}(S_k) \). These yield a pair of basic upper and lower bounds for the optimal single robot coverage length \(\ell^* \), summarized as follows.

Proposition 2. Define:
\[\ell_{\text{min}} = \frac{\sum_{1 \leq k \leq q} \text{len}(S_k)}{n} \quad \text{and} \quad \ell_{\text{max}} = \frac{\text{len}(\partial R) - \text{len}(G_{\text{max}})}{n}, \]

it holds that
\[\ell_{\text{min}} \leq \ell^* \leq \ell_{\text{max}}. \] (4)

Though some gap, if there at least one, must be skipped by the optimal solution, it is not always the case that a largest gap \(G_{\text{max}} \), even if unique, will be skipped by \(\bigcup_{C_j \in C} C_j^* \). That is, an optimal cover \(C^* \) may enclose the largest gap.
Proposition 3. Given a region R and perimeter $P \subset \partial R$, let G_{max} be the unique longest connected component of $\partial R \setminus P$. Let \mathcal{C}^* be an optimal cover of P. Then, there exist OPG instances in which $G_{\text{max}} \subset C_j^*$ for some $C_j^* \in \mathcal{C}^*$.

Proof: The claim may be proved via contradiction with the example illustrated in Fig. 4 which readily generalizes. In the figure, there are four gaps G_1, G_2, G_3, G_4, in which two gaps (G_1, G_3) have the same length (i.e., $\text{len}(G_1) = \text{len}(G_3)$) and are evenly spaced (i.e., $\text{len}(S_1) = \text{len}(S_3) = \text{len}(S_3 \cup G_3 \cup S_1)$). Here, $G_{\text{max}} = G_3$, which is 1.5 times the length of other gaps, i.e., $\text{len}(G_3) = \frac{3}{2} \text{len}(G_1)$.

![Figure 4](image-url) - A case where the perimeter has four segments or maximal connected components. Three of the gaps, G_1, G_2, G_4 are of the same length and are evenly spaced, G_3 is 0.5 times longer.

For $n = 3$ robots, the optimal cover \mathcal{C}^* must allocate each robot to guard each of S_1, S_2, S_3, and $(S_3 \cup G_3 \cup S_4)$ without loss of generality, let $C_1^* = S_1$, $C_2^* = S_2$, and $C_3^* = (S_3 \cup G_3 \cup S_4)$. This means that G_3 is covered by C_3^* and not skipped by \mathcal{C}^*. In this case, $\text{len}(C_1^*) = \text{len}(C_2^*) = \text{len}(C_3^*) = \text{len}(S_1)$.

To see that the coverage may be the case, suppose on the contrary that G_3 is skipped and let $\mathcal{C} = \{C_1, C_2, C_3\}$ be an alternative cover. By Lemma 1, an optimal cover must skip G_3 entirely. In this case, some C_j^*, say C_1, must have its left endpoint coincide with the right endpoint of G_3 (the point where G_3 meets S_4). Then C_1 must cover S_4 and G_4; otherwise, C_2 and C_3 must cover $S_1 \cup S_2 \cup S_3$, which makes $\text{len}(C_2) + \text{len}(C_3) \geq \text{len}(S_1 \cup S_2 \cup S_3) > 2\text{len}(S_1)$ and \mathcal{C} a worse cover than \mathcal{C}^*. By symmetry, similarly, some C_j^*, say C_3, must have its right endpoint coincide with the left endpoint of G_3 and cover S_3 and G_2. However, this means that both G_2 and G_4 are covered by \mathcal{C}. Even if G_1 is skipped, this means $\text{len}(C_1 \cup C_2 \cup C_3) = \text{len}(S_4 \cup G_4 \cup S_1 \cup S_2 \cup G_2 \cup S_3) > \text{len}(S_1 \cup S_2 \cup S_3 \cup G_3 \cup S_4) = 3\text{len}(S_1)$, again making \mathcal{C} sub-optimal. By the pigeonhole principle, at least one of the C_1, C_2, or C_3 must be longer than $\text{len}(S_1)$. Therefore, skipping $G_{\text{max}} = G_3$ in this case leads to a sub-optimal cover. The optimal cover with $n = 3$ is to have $C^* = \{S_1, S_2, (S_3 \cup G_3 \cup S_4)\}$.

Proposition 3 implies that in allocating robots to guard a perimeter $P \subset \partial R$, an algorithm cannot simply start by excluding the longest component from $\partial R \setminus P$ and then the next largest, and so on. This makes solving OPG more challenging. Referring back to Fig. 1, if the top gap is skipped by the cover, then the three robots on the right side of the perimeter (two orange and one green) need to cover the part of the perimeter between the two hexagons. This will cause ℓ^* to increase.

On the other hand, for an optimal cover $\mathcal{C}^* = \{C_1^*, \ldots, C_m^*\}$ of P, some $C_j^* \in \mathcal{C}^*$ must have at least one of its endpoint aligned with an endpoint of a component S_k of P (assuming that $P \subset \partial R$).

Proposition 4. For an optimal cover $\mathcal{C}^* = \{C_1^*, \ldots, C_m^*\}$ of a perimeter $P = S_1 \cup \ldots \cup S_q \subset \partial R = S_1 \cup G_1 \cup \ldots \cup S_q \cup G_q$, for some $S_i \subset P$ and $C_j^* \in \mathcal{C}^*$, their right (or left) endpoints must coincide.

Proof: By Lemma 1, for any $G_k \subset \partial R \setminus P$, and $C_j^* \in \mathcal{C}^*$, $G_k \cap C_j^* = G_k$ or $G_k \cap C_j^* = \emptyset$. Since at least one G_k, $1 \leq k \leq q$, must be skipped by $C_j^* \cup \ldots \cup C_m^*$, some C_j^*, $1 \leq j \leq n$ must have its right endpoint aligned with the right endpoint of S_k, which is on the left of G_k. Following the same argument, some C_j^* and S_k must have the same left endpoints.

Proposition 4 suggests that we may attempt to cover a perimeter P starting from an endpoint of S_1, S_2, and so on. Indeed, as we will show in Section IV, an efficient algorithm can be designed exploiting this important fact.

B. Guarding Multiple Regions

In a multiple region setup, there is one additional level of complexity: the number of robots that will be assigned to an individual region is no longer fixed. This introduces another set of variables n_1, \ldots, n_m with $n_1 + \ldots + n_m = n$, and $n_i, 1 \leq i \leq m$ being the number of robots allocated to guard ∂R_i. For a fixed n_i, the results derived for a single region, i.e., Propositions 2–4 continue to hold.

IV. EFFICIENT ALGORITHMS FOR PERIMETER GUARDING

In presenting algorithms for OPG, we begin with the case where each perimeter $P_i \in \mathcal{P}$ has a single connected component (i.e., P_i is homeomorphic to S^1 or $[0,1]$). Then, we work on the general single region case where the only perimeter is composed of $q > 1$ connected components, before moving to the most general multiple regions case.

A. Perimeters Containing Single Components

When there is a single perimeter P, the solution is straightforward with $\ell^* = \text{len}(P)/n$. With ℓ^* determined, \mathcal{C}^* is also readily computed.

In the case where there are $m > 1$ regions, let the optimal distribution of the n robots among the m regions be given by n_1^*, \ldots, n_m^*. For a given region R_i, the n_i^* robots must each guard a length $\ell_i = \text{len}(P_i)/n_i^*$. At this point, we observe that for at least one region, say R_i, the corresponding ℓ_i must be maximal, i.e., $\ell_i = \ell^*$. The observation directly leads to a naive strategy for finding ℓ^*: for each R_i, one may simply try all possible $1 \leq n_i \leq n$ and find the maximum $\text{len}(P_i)/n_i$ that is feasible, i.e., $n - n_i$ robots can cover all other $R_{i'}$, $i' \neq i$, with each robot covering no more than $\text{len}(P_i)/n_i$. Denoting this candidate cover length $\text{len}(P_i)/n_i$ as ℓ_i and the corresponding n_i as n_i^*, the smallest ℓ_i overall $1 \leq i \leq m$ is then ℓ^*.

\footnote{In this paper, for a non-circular segment or gap, its left endpoint is defined as the \textit{limit point} along the counterclockwise direction along the perimeter and its right endpoint is defined as the limit point in the clockwise direction along the perimeter. So, in Fig. 4, for S_1, its left endpoint touches G_4 and its right endpoint touches G_1.}
The basic strategy mentioned above works and runs in polynomial time. It is possible to carry out the computation much more efficiently if the longest P_i is examined first. Without loss of generality, assume that P_1 is the longest perimeter, i.e., $\text{len}(P_1) \geq \text{len}(P_i)$ for all $1 \leq i \leq m$. Recall that n_i^\ast is the number of robots allocated to P_i that yields ℓ_i^\ast, it must hold that
\[
\frac{\text{len}(P_i)}{n_i^\ast} + 1 < \ell_i^\ast \leq \frac{\text{len}(P_i)}{n_i^\ast} = \ell_i^\ast.
\] (5)
For an arbitrary P_i, simple manipulation of (5) yields
\[
(n_i^\ast + 1)\frac{\text{len}(P_i)}{\text{len}(P_i)} < \ell_i^\ast \leq \frac{\text{len}(P_i)}{n_i^\ast}.
\] (6)
This means that we only need to consider $n_i^e \in \left[\frac{\text{len}(P_i)}{\text{len}(P_i)}\right], \left(\frac{\text{len}(P_i)}{\text{len}(P_i)}\right)\right]$. Moreover, since P_1 is the longest perimeter, $\frac{\text{len}(P_i)}{\text{len}(P_i)} \leq 1$. Therefore, the difference between the two denominators of (6) is no more than 1, i.e.,
\[
\left(n_i^\ast + 1\right)\frac{\text{len}(P_i)}{\text{len}(P_i)} - n_i^\ast < \ell_i^\ast.
\]
When $\text{len}(P_i) \neq \text{len}(P_1), \left(n_i^\ast + 1\right)\frac{\text{len}(P_i)}{\text{len}(P_i)} - n_i^\ast \frac{\text{len}(P_i)}{\text{len}(P_i)} < 1$
and there are two possibilities. One of these is $\left(n_i^\ast + 1\right)\frac{\text{len}(P_i)}{\text{len}(P_i)} = \left[\frac{\text{len}(P_i)}{\text{len}(P_i)}\right]$, which leaves a single possible candidate for n_i^e. The other possibility is $\left(n_i^\ast + 1\right)\frac{\text{len}(P_i)}{\text{len}(P_i)} = \left(\frac{\text{len}(P_i)}{\text{len}(P_i)}\right) + 1$, in which case there is actually no valid candidate for n_i^e. That is, after computing n_i^e and ℓ_i^\ast, if $\text{len}(P_i) = \text{len}(P_1)$ then no computation is needed for P_i. If $\text{len}(P_i) < \text{len}(P_1)$ then we only need to check at most one candidate for n_i^e.

Additional heuristics can be applied to reduce the required computation. First, in finding n_i^e, we may use bisection (binary search) over $[1, m]$ since if a given n_1 is infeasible, any $n_i^e > n_1$ cannot be feasible either because $\text{len}(P_i)/n_1 < \text{len}(P_i)/n_1$. Second, let $\ell = \frac{1}{\sum_{1 \leq i \leq m}(\text{len}(P_i))}/n$, it holds that $\ell_i^\ast \geq \ell_i^\ast \geq \ell$. This means that for each $1 \leq i \leq m$, it is not necessary to try any $n_i > \left[\frac{\text{len}(P_i)}{\text{len}(P_i)}\right]$. Third, if a candidate ℓ_i^\ast is at any time larger than the current candidate for ℓ_i^\ast, that i does not need to be checked further. We only use the first and the third in our implementation since the second does not help much once the bisection step is applied. The pseudo code is outlined in Algorithm 1. Note that we assume the problem instance is feasible ($n \geq m$), which is easy to check.

It is straightforward to verify that Algorithm 1 runs in time $O(m \log n + m^2)$. The $O(m \log n)$ comes from the while loop, which calls the function $\text{ISFEASIBLE}(\ell_i^\ast, n_i^e, i)$ to check n_i^e. Since this function checks whether the current ℓ_i^\ast is feasible for perimeters other than P_i (note that it is assumed that $\text{ISFEASIBLE}(\cdot)$ has access to the input to Algorithm 1 as well). This is done by computing for $i \neq i$, $\nu_i = \left[\frac{\text{len}(P_i)}{\ell_i^\ast}\right]$ and checking whether $\sum_{i \neq i} n_i \leq \text{len}(P_i) - n_i^\ast$. The $O(m^2)$ term comes from the for loop. The running time of Algorithm 1 may be further reduced by noting that the for loop examines $(m - 1)$ candidate ℓ_i^\ast. These ℓ_i^\ast can be first computed and sorted, on which bisection can be applied. This drops the main running time to $O(m \log n + m \log m)$. This second bisection is not reflected in Algorithm 1 to keep the logic and notation more straightforward. If we also consider input complexity, an additional $O(\sum_{1 \leq i \leq m} M_i)$ is needed to compute $\text{len}(P_i)$ from the raw polygonal input and an additional $O(n)$ time is needed for generating the actual locations for the n robots. The total complexity is then $O(m(\log n + \log m) + \sum_{1 \leq i \leq m} M_i + n)$.

Algorithm 1: MULTIRegionSINGLEComp

Input: P_1, \ldots, P_m: each P_i a polygon or p-chain; assume that P_1 is a longest perimeter n: the number of robots

Output: ℓ^\ast, i^\ast: the optimal coverage and the i realizing it

1. $\ell^\ast \leftarrow \infty; i^\ast \leftarrow 1$;
2. Compute n_1^\ast and initial ℓ^\ast;
3. while $n_1^\ast \neq n_1^\ast$ do
 4. $n_1 \leftarrow \left\lfloor \frac{n_1^\ast + n_1^\ast}{n_1^\ast} \right\rfloor$;
 5. if $\text{ISFEASIBLE}(\ell_1, n_1, 1)$ then
 6. $\ell^\ast \leftarrow \ell_1; n_1^\ast \leftarrow n_1; n_2^\ast \leftarrow n_1^\ast$;
 7. else
 8. $n_1^\ast \leftarrow n_1 - 1$;
 9. end
10. end
11. for $i \in \{2, \ldots, m\}$ do
 12. $n_i \leftarrow \left\lfloor \frac{n_i^\ast + n_i^\ast}{n_i^\ast} \right\rfloor$;
 13. if $\text{ISFEASIBLE}(\ell_i, n_i^\ast, i)$ and $\ell_i < \ell^\ast$ then
 14. $\ell^\ast \leftarrow \ell_i; i^\ast \leftarrow i$;
 15. end
16. end
17. return ℓ^\ast, i^\ast.

B. Single Perimeter Containing Multiple Components

Additional structural analysis. In computing ℓ^\ast for a single perimeter P with multiple connected components, assume that P is composed of q maximal connected components S_1, \ldots, S_q (e.g., Fig. 3), leaving G_1, \ldots, G_q as the gaps on ∂R. Given an optimal cover $\ell^\ast = \{C_1^\ast, \ldots, C_n^\ast\}$, by Proposition 4, we may assume that the left endpoint of some C_j^\ast, $1 \leq j \leq n$ coincides with the left endpoint of some S_k, $1 \leq k \leq q$. We then look at the right endpoint of C_j^\ast. If it does not coincide with the right endpoint of some S_k (k and k' may or may not be the same), it must coincide with the left endpoint of C_{j+1}^\ast. Continuing like this, eventually we will hit some C_j^\ast, where the right endpoint of C_j^\ast coincides with the right endpoint of some S_k. Within a partitioned subset $C_1^\ast, \ldots, C_j^\ast$, the maximal coverage of each robot is minimized when $\text{len}(C_j^\ast) = \ldots = \text{len}(C_j^\ast)$. Because $\ell^\ast = \text{len}(C_j^\ast)$ for some $1 \leq j \leq n$, at least one of the subsets must have all robots cover exactly a length of ℓ^\ast. These two key structural observations are summarized as follows.

Theorem 5. Let $\ell^\ast = \{C_1^\ast, \ldots, C_n^\ast\}$ be a solution to an OPG instance with a single perimeter $P = S_1 \cup \ldots \cup S_q$ and gaps G_1, \ldots, G_q. Then, ℓ^\ast may be partitioned into disjoint subsets with the following properties

1. the union of the individual elements from any subset forms a continuous p-chain,
2) the left endpoint of such a union coincides with the left endpoint of some S_k, $1 \leq k \leq q$,
3) the right endpoint of such a union coincides with the right endpoint of some S_k, $1 \leq k' \leq q$, and
4) the respective unions of elements from any two subsets are disjoint, i.e., they are separated by at least one gap.

Moreover, for at least one such subset, $\{C_{j_1}, \ldots, C_{j_q}\}$, it holds that $\ell^* = \text{len}(C_{j_1}) = \ldots = \text{len}(C_{j_q})$.

In the example from Fig. 1, ℓ^* is partitioned into two subsets satisfying the conditions stated in Theorem 5.

A baseline algorithm. The theorem provides a way for computing ℓ^*. For fixed $1 \leq k, k' \leq q$, denote the part of ∂R between S_k and $S_{k'}$ following a clockwise direction (with S_k and $S_{k'}$ included) as $S_{k-k'}$. Theorem 5 says that for some k, k', $\text{len}(S_{k-k'}) = n_{k-k'}^* \ell^*$ for some integer $n_{k-k'}^* \in [1, n]$. We may find k, k', and $n_{k-k'}^*$ by exhaustively going through all possible k, k', and $n_{k-k'}^*$ (as a candidate of $n_{k-k'}^*$). For each combination of k, k' and $n_{k-k'}^*$, we can compute a

$$\ell_{k-k'}^* = \frac{\text{len}(S_{k-k'})}{n_{k-k'}^*}$$

(7)

and check $\ell_{k-k'}^*$'s feasibility. The largest feasible $\ell_{k-k'}^*$ is ℓ^*.

Partial feasibility check: For checking feasibility of a particular $\ell_{k-k'}$, i.e., whether $\ell_{k-k'}$ is long enough for the rest of the robots to cover the rest of the perimeter, we simply tile $(n - n_{k-k'}^*)$ copies $\ell_{k-k'}^*$ over the rest of the perimeter, starting from $S_{kmod q+1}$. As an example, see Fig. 5 where $n = 6$ robots are to cover the perimeter (in red, with five components S_1, \ldots, S_5). Suppose that the algorithm is currently working with S_{1-2} (i.e., $k = 1$ and $k' = 2$). If $\ell_{1-2}^* = \text{len}(S_{1-2})/2$. Each of the five green line segments C_1, \ldots, C_5 in the figure has this length. As visualized in the figure, it is possible to cover $P \setminus S_{1-2}$ with three more robots, which is no more than $n - n_{1-2}^* = 4$. Therefore, this ℓ_{1-2}^* is feasible; note that it is not necessary to exhaust all $n = 6$ robots. In the figure, C_3 covers the entire S_3 and G_3, as well as part of S_4. The rest of S_4 is covered by C_4. As C_4 is tiled, it ends in the middle of G_4, so C_5 starts at the beginning of S_5. On the other hand, if $n_{1-2}^* = 3$, the resulting ℓ_{1-2}^* (each of the orange line segments has this length) is infeasible as S_5 is now left uncovered.

![Fig. 5: An illustration of the feasibility check of ℓ_{1-2}^*. The single rectangular region and the perimeter (five red segments S_1-S_5) are shown at the bottom. The orange and green line segments show two potential covers.](image)

The tiling-based feasibility check takes $O(q)$ time as there are at most q segments to tile; it takes constant time to tile each using a given length. Let us denote this feasibility check $\text{ISTILINGFEASIBLEPARTIAL}(k, k', n_{k-k'}^*)$, we have obtained an algorithm that runs in $O(nq^3)$ times since it needs to go through all $1 \leq k \leq q$, $1 \leq k' \leq q$ and $1 \leq n_{k-k'}^* \leq n$.

For each combination of k, k', and $n_{k-k'}^*$, it makes a call to $\text{ISTILINGFEASIBLEPARTIAL}()$. While a $O(nq^3)$ running time is not bad, we can do significantly better.

A much faster algorithm. In the baseline algorithm, for each $k-k'$ combination, up to n candidate $n_{k-k'}^*$ may be attempted. To gain speedups, the first phase of the improved algorithm reduces the range of ℓ^* to limit the choice of $n_{k-k'}^*$. For the faster algorithm, a new feasibility checking routine is needed.

Partial feasibility check: We introduce a feasibility check given only a length ℓ. That is, a check is done to see whether n robots are sufficient for covering P without any covering more than length ℓ. This feasibility check is performed in a way similar to $\text{ISTILINGFEASIBLEPARTIAL}()$ but now k and k' are not specified. We instead try all $S_k, 1 \leq k \leq q$ as the possible starting segment for the tiling. Let us denote this procedure $\text{ISTILINGFEASIBLEFULL}(\ell)$, which runs in $O(q^2)$.

Using bisection to limit the search range for ℓ^*: Starting from the initial bounds for ℓ^* given in Proposition 2 and with $\text{ISTILINGFEASIBLEFULL}(\ell)$, we can narrow the bound to be arbitrarily small, using bisection, since ℓ^* is the minimum feasible ℓ. To do this, we start with ℓ as the middle point of initial lower bound ℓ_{min} and upper bound ℓ_{max}, and run $\text{ISTILINGFEASIBLEFULL}(\ell)$. If ℓ is feasible, the upper bound is lowered to ℓ. Otherwise, the lower bound is raised to ℓ. In doing this, our goal in the first phase of the faster algorithm is to reduce the range for ℓ^* so that there is at most a single choice for $n_{k-k'}^*$, regardless of the values of k and k'. The stopping criteria for the bisection is given as follows, the proof of which can be found in [37].

Proposition 6. Assume that the bisection search stops with lower and upper bound being ℓ_{min} and ℓ_{max}. If

$$\ell_{\text{max}} - \ell_{\text{min}} < \left[\frac{\sum_{1 \leq k \leq q} \text{len}(S_k)^2}{n^2 \text{len}(\partial R)}\right]$$

(8)

then there is at most a single choice for $n_{k-k'}^*$ for all k, k'.

Finding ℓ^*: Equation (8) gives the stopping criteria used for refining the bounds for ℓ^*. After completing the first phase, the algorithm moves to the second phase of actually pinning down ℓ^*. In this phase, instead of checking $\ell_{k-k'}^*$ one by one, we collect $\ell_{k-k'}^*$ for all possible combinations of k, k'. Because the first phase already ensures for each k, k' combination there is at most one pair of $n_{k-k'}^*$ and $\ell_{k-k'}^*$, there are at most q^2 total candidates. After all candidates are collected, they are sorted and another bisection is performed over these sorted candidates. Feasibility check is done using $\text{ISTILINGFEASIBLEPARTIAL}()$.

The complete algorithm is given in Algorithm 2. Note that ℓ_{min} and ℓ_{max}, which change as the algorithm runs, are not the same as the fixed ℓ_{min} and ℓ_{max} from Proposition 2.

In terms of running time, the first while loop starts with $\ell_{\text{max}} - \ell_{\text{min}} = \frac{\text{len}(\partial R) - \text{len}(G_{\text{max}})}{n} - \sum_{1 \leq k \leq q} \frac{\text{len}(S_k)}{n}$ and stops when $\ell_{\text{max}} - \ell_{\text{min}} \leq \left[\frac{\sum_{1 \leq k \leq q} \text{len}(S_k)^2}{n \text{len}(\partial R)}\right]$. Therefore, the bisection is executed log $\left[\frac{\text{len}(\partial R)}{\sum_{1 \leq k \leq q} \text{len}(S_k)}\right]$ times, which by the assumption that $\text{len}(\partial R)$ is a polynomial factor over $\sum_{1 \leq k \leq q} \text{len}(S_k)$, is $O(\log(n+q))$. Since each feasibility check takes $O(q^2)$ time, the first while loop takes $O(q^2 \log(n+q))$ time. For loops work with a total of $O(q^2)$ candidates
and must sort them, taking time $O(q^2 \log q^2) = O(q^2 \log q)$. Then, the second while loop bisects $O(q^2)$ candidates and calls \texttt{IStilingFeasiblePartial()} for each check, taking time $O(q \log q^2) = O(q \log q)$. The total running time of Algorithm 2 is then $O(q^2 \log (n + q) + M + n)$.

\textbf{Algorithm 2: SingleRegionMultiComp}

\begin{algorithmic}
\STATE \textbf{Input :} $\partial R = S_1 \cup G_1 \cup \ldots \cup S_q \cup G_q$; a single boundary with the perimeter $\partial = S_1 \cup \ldots \cup S_q$.
\STATE \textbf{Output:} ℓ^*, k^*, k^{**}: the optimal coverage and the pair of k and k' that realize the optimal coverage
\STATE \%Phase one: narrow the range of ℓ^*.
\STATE $\ell^\min \leftarrow \frac{\sum_{i \in k} \text{len}(S_k)}{n} \cdot \ell_{\max} \leftarrow \text{len}(\partial R) - \text{len}(G_{\max})$;
\WHILE{$\ell^\max - \ell^\min > \frac{\sum_{i \in k} \text{len}(S_k)}{n \cdot \text{len}(\partial R)}$}
\STATE $\ell \leftarrow \frac{\ell^\max + \ell^\min}{2}$;
\STATE \textbf{if} IStilingFeasibleFull(ℓ)? $\ell^\max \leftarrow \ell : \ell^\min \leftarrow \ell$;
\ENDWHILE
\%Phase two: pin down ℓ^*.
\STATE $\ell^* \leftarrow \infty$; $k^* \leftarrow 0$; $k^{**} \leftarrow 0$;
\WHILE{sm.size() > 1}
\STATE $\%$Extract the element from sm in the middle.
\STATE $(\ell', k', k^{**}) \leftarrow \ell^*$.
\STATE \textbf{if} IStilingFeasiblePartial(k^*, k^{**}) \textbf{then}
\STATE $\ell^* \leftarrow \ell'$; $k^{**} \leftarrow k^*$; $k^{**} \leftarrow k'$;
\STATE $\text{sm} \leftarrow \text{sm}.\text{range}(\text{sm}.\text{minKey}(), \ell^*)$;
\STATE \textbf{else}
\STATE $\text{sm} \leftarrow \text{sm}.\text{removeRange}(\text{sm}.\text{minKey}(), \ell^*)$;
\ENDWHILE
\RETURN ℓ^*, k^*, k^{**}
\end{algorithmic}

C. Multiple Perimeters Containing Multiple Components

The algorithm for the multiple perimeter case is a direct generalization of Algorithm 2. To facilitate the description, let the perimeter $P_i, 1 \leq i \leq m$, contain q_i maximal connected components, i.e., $P_i = S_{i,1} \cup \ldots \cup S_{i,q_i}$ and the boundary $\partial R_i = S_{i,1} \cup G_{i,1} \cup \ldots \cup S_{i,q_i} \cup G_{i,q_i}$. We extend the definition of $S_{k,k'}$ for a single perimeter to $S_{i,k,k'}$ for multiple perimeters. By a straightforward generalization of Theorem 5 to multiple perimeters, for an OPG instance, the length of some $S_{i,k,k'}$ must be an integer multiple of ℓ^*. Similar to the single perimeter case, we can try all $S_{i,k,k'}$ and for each try all possible $1 \leq n_{i,k,k'}^c \leq n$. This gives us $\ell_{i,k,k'}^c = \frac{\text{len}(S_{i,k,k'})}{n_{i,k,k'}}$ as candidates for ℓ^*; there are $n(\sum_{i=1}^{m} q_i^2)$ such candidates. For checking the feasibility of $\ell_{i,k,k'}^c$, we may use IStilingFeasiblePartial() for the rest of P_i (taking $O(q_i)$ time) and IStilingFeasibleFull() for all $1 \leq i' \leq m$ and $i' \neq i$ (taking $O(q_i \sum_{i'=1}^{m} q_{i'}^2)$ time). This yields a baseline algorithm that runs in $O(n(\sum_{i=1}^{m} q_i^2)^2)$ time.

From here, speedups can be obtained as in the single perimeter case using the same reasoning. This yields a two-phase algorithm, which we call MultiRegionSingleComp, that runs in $O(n(\sum_{i=1}^{m} q_i^2) \log (n + \sum_{i=1}^{m} q_i) + \sum_{i=1}^{m} M_i + n)$.

V. Performance Evaluation and Applications

Our evaluation first verifies the algorithms’ running time matches the claimed bounds. Then, two practical scenarios are illustrated to show how OPG may be adapted to applications.

A. Algorithm Performance

In the performance results presented here, a data point is the average from 10 randomly generated OPG instances. All algorithms are implemented in Python 2.7, and all experiments are executed on an Intel® Xeon® CPU at 3.0GHz.

For the case of m perimeters each containing a single segment, for each $1 \leq i \leq m$, we set $\text{len}(\partial R_i) = 1$ and let $\text{len}(P_i)$ be uniformly distributed in $(0, 1]$.

Fig. 6 shows the result for an example with $m = 10$ and $n = 30$. For various values of m, n, the running time of MultiRegionSingleComp is summarized in Table I, which scales very well with m and n (note that the $n \leq m$ case does not make much sense here).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{m} & \textbf{n} & 10^8 & 10^9 & 10^{10} & 10^{11} & 10^{12} \\
\hline
10^6 & 1.152 & 1.142 & 1.508 & 1.652 & 1.617 & 1617 \\
10^8 & NA & 176.115 & 223.186 & 227.250 & 230.000 & 230.000 \\
\hline
\end{tabular}
\caption{MultiRegionSingleComp running time (seconds)}
\end{table}

For the case of a single perimeter with multiple components, a random polygon is generated on which 2q points are randomly sampled that yield q segments (that form the perimeter) and q gaps. An example instance and the optimal solution with $q = 3$ and for various q and n combinations is given in Table II.

For multiple perimeters containing multiple components, m polygons are created with $\text{len}(\partial R_i)$ randomly distributed in $[1, 10]$. For setting q_i, we fix a q and let $q_i = q(0.5 + \text{random}(0, 1))$. Representative computation results of MultiRegionMultiComp are listed in Table III.
The authors would like to thank the anonymous RSS reviewers for their constructive comments.

Due to limited space, only selected essential performance data is presented here. More complete performance data and associate analysis can be found [37].

B. Two Applications Scenarios

Securing a perimeter. As a first application, consider a situation where a crime has just been committed at the Edinburgh Castle (see Fig. 8). The culprit remains in the confines of the castle but is mixed within many guests at the scene. As the situation is being investigated and suppose that the brick colored buildings are secured, guards (either personnel or a number of drones) may be deployed to ensure the culprit does not escape by climbing down the castle walls. Using SINGLEREGIONMULTICOMP, a deployment plan can be quickly computed given the amount of resources at hand so that each guard only needs to secure a minimum length along the castle walls. Fig. 8 shows the optimal deployment plan for 15 guards.

Fire monitoring. In a second application, consider Fig. 9 where a forest fire has just been put out in multiple regions. As there is still some chance that the fire may rekindle and spread, for prevention, a team of firefighters is to be deployed to watch for the possible spreading of the fire. Here, in addition to using MULTIREGIONMULTICOMP to compute optimal locations for deploying the firefighters, we also generate minimum time trajectories for the firefighters to reach their target locations while avoiding going through the dangerous forests. This is done via solving a bottleneck assignment problem [38]. Note that the lake region creates gaps that cannot be traveled by the firefighters; this can be handled by making these gaps infinitely large. Fig. 9 shows the optimal locations for 34 firefighters.

Animations of the deployment process and other test cases can be found in the accompanying video.
REFERENCES

