CS 460/560
Introduction to Computational Robotics
Fall 2019, Rutgers University

Midterm Review

Instructor: Jingjin Yu
A set is a collection of elements. Examples:

- \{1, a, cup, \pi, \} – elements do need not be of the same type
- Natural numbers (an infinite set), \(\mathbb{N} = \{0, 1, 2, \ldots\} \)
- \(n \)-dimensional Euclidean spaces, \(\mathbb{R}^n \) (e.g., \(\mathbb{R}^3 \) is the 3-dimensional space)

Set operations

- Union: \(A \cup B = \{x \mid x \in A \lor x \in B\} \)
- Intersection: \(A \cap B = \{x \mid x \in A \land x \in B\} \)
- Complement: \(\overline{A} = \{x \mid x \in U \land x \notin A\} \)
- Difference: \(A - B = \{x \mid x \in A \land x \notin B\} \) (or \(A \setminus B \))
- Symmetric difference: \(A \oplus B = A \cup B - A \cap B \)

Venn diagram

- \(A \cap B \)
- \(A \cup B \)
- \(\overline{A} \)
- \(A - B \)
- \(A \oplus B \)
Power Set and Cardinality

Powerset: $\mathcal{P}(S) = \{A \mid A \subset S\}$, example:
- $S = \{1,2\}$
- $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

Cardinality: essentially the “size” of a set
- $|\emptyset| = 0$
- $|\{1,2\}| = 2$
- $|\mathcal{P}(\{1,2\})| = |\{\emptyset, \{1\}, \{2\}, \{1,2\}\}| = 4$
- In general, $|\mathcal{P}(S)| = 2^{|S|}$
- $|\mathbb{N}| = \aleph_0$ - the “smallest” infinite (cardinal) number, read “Aleph 0”
- $|\mathbb{R}| = \aleph_1$ - there are “more” real number than natural numbers

Measuring the relative cardinality of sets
- $|A| \leq |B|$ if there exists an injective function $f : A \rightarrow B$
- If $|A| \leq |B|$ and $|B| \leq |A|$, then $|A| = |B|$
 - This means there is a **bijective function** between A and B
- $|\mathbb{Q}| = |\mathbb{N}|$ - countable
- $|\mathbb{R}| > |\mathbb{N}|$, real numbers are uncountable
Group Theory Concepts

A set G together with a **binary operation** \cdot is a **group** if the following group axioms are satisfied

- **Closed**: $\forall a, b \in G, a \cdot b \in G$
- **Associative**: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- **Identity**: $\exists e \in G, \forall a \in G, a \cdot e = e \cdot a = a$
- **Inverse**: $\forall a \in G, \exists b \in G, a \cdot b = b \cdot a = e$

From these axioms, can show

- The identity is unique (how?)
- The inverse is unique (how?)

Examples?

- The set of integers under addition
- The set of positive rational numbers under multiplication
Topological Manifolds

Homeomorphism: two spaces X and Y are **homeomorphic** if there is a continuous function $F: X \rightarrow Y$ that is bijective

Roughly speaking, an n-dimensional topological manifold M is a space such that for $x \in M$, there exists a neighborhood U of x **homeomorphic** to \mathbb{R}^n

1-dimensional manifolds:

$(a, b), \mathbb{R}$

2-dimensional manifolds: $\mathbb{R}^2, S^2, T^2, ...$

Alternative view: take any piece, and smash it... it should look like \mathbb{R}^n
Why Topology and Manifolds?

Sensing, planning, and control are all related to manifolds

Robotics examples

- A point robot in 2D take any position $x \in \mathbb{R}^2$
 - This is also a group $E(2)$
 - 2-dimensional Euclidean group
- A car in 2D has one more dimension
 - This is called $SE(2) = \mathbb{R}^2 \times S^1$
 - $SE(2)$ reads: Special Euclidean group of dimension 2
 - Yes, each point in the space is also a group element, just like \mathbb{R} and \mathbb{R}^2
 - Using (x, y, θ), can describe all possible positions of the car
Why Topology and Manifolds? Continued

Robotics examples, continued

- A quadcopter is in a six-dimensional manifold
 - Three positions \((x, y, z)\)
 - Three rotations \((\text{yaw}, \text{pitch}, \text{roll})\)
 - This is \(SE(3) = \mathbb{R}^3 \times SO(3)\)
 - Special Euclidean group of three dimensions

- A 2-link robot arm has a 2-dimensional manifold
 - For rotations in the plane, this is \(T^2\) (torus)
 - Yes, a pose of such a robot arm corresponds to a point on a donut

- These are the **configuration spaces** of the robots

- More on this later
Convexity

Convexity. In a Euclidean space, a set X is **convex** if given any $x_1, x_2 \in X$, all points on the straight-line segment $x_1 x_2$ belong to X.
Probability Essentials – Expectation

Expectation: the expected value of a random variable

⇒ In the discrete case, for an RV X with n values x_1, \ldots, x_n

$$E[X] = \sum_{1 \leq i \leq n} x_i P(X = x_i) = x_1 P(X = x_1) + \cdots + x_n P(X = x_n)$$

⇒ This is also commonly known as the “mean” or “weighted average”
⇒ E.g., the average score of this class
⇒ E.g., single dice toss
 ⇒ If we let $X: f_i \mapsto i$, that is, giving each face a number 1-6,
 ⇒ Then $E[X] = 1 \times \frac{1}{6} + \cdots + 6 \times \frac{1}{6} = 3.5$
Linearity of Expectation

Linearity of Expectation: the expectation of an RV is the sum of the expectation of the component RVs

⇒ Very handy in practice!

⇒ Q: tossing a coin, how many tosses to get a first head, on average?

⇒ The RV: # of tosses to get a first head

⇒ Decompose

⇒ Get a head in first toss: probability $\frac{1}{2}$

⇒ Get a first head in second toss: $\frac{1}{4}$

⇒ ...

⇒ Get a first head in n-th toss: $\frac{1}{2^n}$

⇒ Apply linearity: $T = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + \cdots + n \cdot \frac{1}{2^n} + \cdots = 2$
Linearity of Expectation, Continued

Q: tossing a coin, how many tosses to get both sides, on average?

⇒ The RV: # of tosses to get both sides

⇒ Decompose:

⇒ # of tosses to get a first side (doesn’t matter head or tail)
 ⇒ What is this #?
 ⇒ Yes, 1, because the first toss must produce a side

⇒ # of tosses to get a different side
 ⇒ What is this #?
 ⇒ This is the same as asking for a specific side, like a head
 ⇒ So the # is 2 from the previous calculation

⇒ To total # of tosses to get both sides, in expectation, is $1 + 2 = 3$

⇒ You should be able to generalize this to an n-sided coin
Localization with Triangulation

Triangulation is an ancient technique

⇒ Known for at least 1700 years (Pei Xiu)

Straightforward principle

\[
\tan \alpha = \frac{d}{x_1}, \tan \beta = \frac{d}{x_2}, x_1 + x_2 = D \quad \Rightarrow d = \frac{D}{\frac{1}{\tan \alpha} + \frac{1}{\tan \beta}}
\]
Localization with Trilateration

Triangulation locates the position of a distant object

Trilateration instead localizes with respect to distant objects

- 2D example
- If we know the distances
- Where on the map?

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

NYC?

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Rutgers
How does Global Positioning System Work?

The principle is **trilateration**: determining absolute or relative location of points by **measurement of distance**

- We have seen 2-dimensional trilateration
- What about GPS? How many distances?
- GPS is three-dimensional
- 4+ satellites!
Components of a (General) Search Problem

- **State space** S: in this case, an edge-weighted graph
- **Initial** (start) and **goal** (final) states: x_I and x_G
 - There can be more than one start/goal state: solve one side of a Rubik’s cube
- **Action**: in this case, moving from one state to a nearby state
- **Transition model**: tuples (s_1, a, s_2) that are valid
 - Sometimes written as $T(s_1, a) = s_2$
 - There are usually costs/rewards associated with a transition, $R(s_1, a)$
- **Solution**: valid transitions connecting x_I and x_G
 - Optimal solution: solution with lowest cost (e.g., length of the path)
State Space Example: 8-puzzle

- State space: arrangements of the 8 pieces
- State space size: $9! = 362880$
- What if we have 1, 2, 3, 4, 5, 6, *, *?
Graph Basics

A graph \(G = (V, E) \) is a set of vertices \(V \) and a set of edges \(E \)

⇒ Example
⇒ \(V = \{A, B, C, G, S\} \)
⇒ \(E = \{(A, B), (A, C), (A, G), (A, S), (B, S), (B, C), (C, G)\} \)

Variations
⇒ A graph may be **directed**
⇒ There can be **multi-edges** between two vertices
 ⇒ This is called a **multi-graph**
 ⇒ We will not consider multi-graphs in our course

Basic properties
⇒ An undirected graph with \(n \) vertices has **at most** \(\frac{n^2 - n}{2} \) edges
 ⇒ When this happens, the graph is a **complete** graph
⇒ A graph is **connected** if there is a path between any two vertices
⇒ A connected graph with \(n - 1 \) edges is a **tree**
A Generic Graph Search Algorithm

input: $G = (V, E), x_I, x_G$

AddToQueue($x_I, Queue$); // Add x_I to a queue of nodes to be expanded

while (!IsEmpty($Queue$))

 $x \leftarrow$ Front($Queue$); // Retrieve the front of the queue

 if ($x.expanded == true$) continue; // Do not expand a node twice

 $x.expanded = true$; // Mark x as expanded

 if ($x == x_G$) return solution; // Return if goal is reached

 for each neighbor n_i of x // Add all neighbors of to the queue

 if ($n_i.expanded == false$) AddToQueue($n_i, Queue$)

return failure;

Different graph search algorithms (breadth first, depth-first, uniform-cost, ...) differ at the function AddToQueue

To retrieve the actual path, use back pointers
Uniform-Cost Search

Maintain queue order based on current cost

⇒ Produces optimal path!
⇒ This is basically the Dijkstra’s algorithm
A* Search

Maintain queue order based on current cost + guess

<table>
<thead>
<tr>
<th>State</th>
<th>$h(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
</tr>
</tbody>
</table>
A Generic Graph Search Algorithm

input: $G = (V, E), x_I, x_G$

AddToQueue(x_I, Queue); // Add x_I to a queue of nodes to be expanded

while(!IsEmpty(Queue))
 $x \leftarrow$ Front(Queue); // Retrieve the front of the queue
 if($x.expanded == true$) continue; // Do not expand a node twice
 $x.expanded = true$; // Mark x as expanded
 if($x == x_G$) return solution; // Return if goal is reached
 for each neighbor n_i of x // Add all neighbors of to the queue
 if($n_i.expanded == false$) AddToQueue(n_i, Queue)

return failure;

A*: AddToQueue(x) uses $f(x) = g(x) + h(x)$

$\Rightarrow g(x)$: the current best cost from start node x_I to node x
$\Rightarrow h(x)$: the estimated cost from x to goal x_G
$\Rightarrow g(x)$ is cost-to-come, $h(x)$ is a heuristic
\Rightarrow The unprocessed node with the smallest $f(x)$ is placed in the front of the queue
Admissible and Consistent Heuristic

⇒ Assume the cheapest path from \(x \) to a goal is \(c(x) \), an **admissible heuristic** satisfies

\[
h(x) \leq c(x)
\]

⇒ A **consistent** heuristic is defined as

\[
h(n) \leq c(n, n') + h(n')
\]

⇒ A form of triangle inequality

⇒ A **consistent** heuristic is **always admissible**
⇒ The reverse is not always true

⇒ Example of heuristic functions
⇒ Manhattan distance
⇒ Straight-line distance
⇒ Consistent
Why the Configuration Space?

A powerful abstraction for solving **motion planning** problems

⇒ Motion planning is to find feasible motions for robots to go from x_I to x_G

⇒ This is non-trivial, e.g., how to plan for parallel parking a car?

⇒ A hard problem for many drivers!

⇒ And this is just a problem in 2D/3D!

⇒ Obviously, the position and the orientation must be changed together

⇒ With C-space, this becomes **searching for a path** in the joint space of 2D position $(x, y) \in \mathbb{R}^2$ and rotation $\theta \in S^1$
Modeling Robot as Linked Rigid Bodies

Common robot models

- A single point (point robot)
- A single rigid body

- Multiple rigid bodies (links) joined with joints
DOF and Types of Joints

Configuration: specification of where all pieces of a robot are

Degrees of freedom (dof): the smallest number of real-valued (i.e., continuous) coordinates to fully describe configurations of a robot

⇒ More on this later

Types of joints

⇒ 2D

⇒ 3D

Robots generally are viewed as rigid bodies joined by joints

Image source: Planning Algorithms
Examples

Train

A fan blade

Door

Double pendulum

Coin lying flat on a table

Coin on edge
DOF for a Single Rigid Body

The position is fully determined by three fixed points on the body.

General formula: \(\text{DOF} = \text{total DOF of points} - \# \text{ of constraints} \)

- Car: \(2 \times 3 - 3 = 3 \)
- Quadcopter: \(3 \times 3 - 3 = 6 \)

Alternatively, can do this incrementally:

- For the car, A has 2 dofs
- Once A is fixed, because \(d_{AB} \) is fixed, B has 1 extra dof
- For fixed AB, C is fixed, so 0 extra dof
- What about a quadcopter?
Determining the DOF for General Robots

2D chains
- Base link is 3D ($\mathbb{R}^2 \times S^1$)
- If fixed, then often 1D
- Adding joints generally adds one more dimension

3D chains
- Base link is 6D ($\mathbb{R}^3 \times SO(3)$)
- If fixed, depending on the joint
- Then add the DOF of each additional joint

Closed chains
- We have a formula!
- N: 6 for 3D, 3 for 2D
- k: # of links (including the ground link)
- n: the number of joints
- f_i: DOF of the joint
- Examples
 - 2D, 3 links
 - 2D, 4 links
 - 2D, 6 links

\[
DOF = N(k - 1) - \sum_{i=1}^{n} (N - f_i) = N(k - n - 1) + \sum_{i=1}^{n} f_i
\]
Last time, we covered several **combinatorial motion planning** algorithms in the plane

- Vertical cell decomposition
- Shortest-path roadmaps
- Maximum clearance roadmaps

What do these have in common?

- Each provides a **combinatorial** partitioning of the environment
- Which makes these algorithms **complete**
Implications of the Halting Problem

So, are all algorithms complete?

⇒ No!

⇒ Proof sketch

⇒ There exist algorithms which we cannot tell whether they will stop
⇒ Such algorithms may run forever and there is nothing we can do
⇒ Such algorithms/programs are not complete

⇒ In practice, this can be bad

⇒ E.g., real time systems
⇒ Solution: do not use full Turing machine

Combinatorial algorithms are complete

⇒ This is because every single point in C_{free} is covered
⇒ This is a big deal – a piece of mind
⇒ Motivates the development of combinatorial methods for higher dimensions
Key Components of Sampling-Based Planning

Sampling-based planning requires several important subroutines

- An **efficient sampling routine** is needed to generate the samples. These samples should cover C_{free} well in order to be effective.
- **Efficient nearest neighbor search** is necessary for quickly building the roadmap: for each sample in C_{free} we must find its k-nearest neighbors.
- The neighbor search also requires a **distance metric** to be properly defined so we know the distance between two samples.
 - This can be tricky for certain spaces, e.g., $SE(3)$.
- **Collision checking** - Note that C_{free} is not computed explicitly so we actually are checking collisions between a complex robot and a complex environment.
Sampling Routine

The simplest way of achieving this: **uniformly random sampling**

Generally, **incremental, dense** sampling w/ good **dispersion**

A sample \((x_1, x_2) \in \mathbb{R}^2\)

(a) 196 pseudorandom samples
(a) 196 Halton points
(b) 196 Hammersley points
Nearest Neighbor Search w/ k-d Tree

Connecting the samples

⇒ Building the graph requires connecting the samples
⇒ Need efficient methods for this

k-d Tree
BVH (Bounded Volume Hierarchy) breaks complex objects into pieces.

For collision checking, it works with two BVHs:
- BVs collide \Rightarrow possible collision
- BVs not colliding \Rightarrow no collision
Probabilistic Roadmap in More Detail

C_{free}, generally high dimensional
Generating Random Samples

Random sample

Random sample
Rejecting Samples Outside C_{free}
Collecting Enough Samples in C_{free}
Connect to k Nearest Neighbors (If Possible)

$k = 3$
Connect to k Nearest Neighbors (If Possible)
Query Phase
Understand Homework

You should understand HW solutions
Focus on these that do not require you to do heavy computation
Examples – DoF Computation

\[\text{DOF} = N(k - 1) - \sum_{i=1}^{n} (N - f_i) = N(k - n - 1) + \sum_{i=1}^{n} f_i \]