Lecture 14
Intro To Sampling-Based Planning Methods (2)

Instructor: Jingjin Yu
Outline (for Next 3-4 Lectures)

Drawbacks of combinatorial motion planning methods

Probabilistic roadmap (PRM) introduction

Components of sampling-based motion planning methods

- Sampling
- k-d tree and nearest neighbor search
- Distance metric
- Collision detection

PRM in more detail

A new notion of completeness

Rapidly-exploring random trees (RRT)

When would sampling-based method work well?

Optimality issues
Recall the illustration of the Piano Mover’s Problem

- Modeling of the free configuration space C_{free} can be a daunting task – they have to be represented as semi-algebraic sets
- The associated computation is also prohibitive for even just a few degrees of freedom

To the rescue: sampling based methods – instead of representing C_{free} explicitly and globally, we instead “probe” the space locally, as necessary
Sampling-Based Planning

\[x \rightarrow I \rightarrow G \]
Key Components of Sampling-Based Planning

Sampling-based planning requires several important subroutines

⇒ An **efficient sampling routine** is needed to generate the samples. These samples should **cover** C_{free} well in order to be effective.

⇒ **Efficient nearest neighbor search** is necessary for quickly building the roadmap: for each sample in C_{free} we must find its k-nearest neighbors.

⇒ The neighbor search also requires a **distance metric** to be properly defined so we know the distance between two samples.

⇒ This can be tricky for certain spaces, e.g., $SE(3)$.

⇒ **Collision checking** - Note that C_{free} is not computed explicitly so we actually are checking collisions between a complex robot and a complex environment.
Nearest Neighbor Search

Connecting the samples

⇒ Building the graph requires connecting the samples
⇒ This cannot be done for all pairs of points!
 ⇒ For \(N \) sample points, this requires \(N^2 \) operations
 ⇒ But \(N \) can be very large, e.g., \(> 10^5 \)
 ⇒ For \(N = 10^6 \), \(N^2 = 10^{12} \)
⇒ We have to do it more efficiently!
⇒ This is known as nearest neighbor search

Variants of useful nearest neighbor search

⇒ 1-NN: finding a single nearest neighbor
 ⇒ Can be done with \(k \)-d trees
 ⇒ We will look at this in more detail
⇒ \(k \)-NN: finding \(k \) nearest neighbors
 ⇒ Note the \(k \) here is not the same as the \(k \) in \(k \)-d trees
 ⇒ Can run 1-NN algorithms \(k \) times
\textbf{k-d Tree}

\textit{k-d} tree stands for \textit{k-dimensional trees}

\begin{itemize}
 \item A data structure for storing points in \textit{k} dimensions
 \item Assumes a tree like structure
 \item Useful for finding points w/ certain properties
 \item Can be used for solving 1-NN
\end{itemize}

Construction of a \textit{k-d} tree for \textit{n} points

\begin{itemize}
 \item Pick dimension \textit{i}, pick a point with coordinates \textit{x} = (x_1, \ldots, x_i, \ldots, x_k)
 \item Split the points based on \textit{x}_i (greater or less than)
 \item Repeat the above two steps recursively
 \begin{itemize}
 \item Increase \textit{i} (modulo \textit{k}) each time
 \item I.e., pick a new dimension each time
 \end{itemize}
 \item Depth: \text{log} \textit{n} if balanced
 \item Construction takes \textit{O}(kn \log n) time
 \begin{itemize}
 \item Each dimension needs sorting \textsim{O}(n \log n)
 \end{itemize}
 \item Can speed up to \textit{O}(n \log n)
 \item Balancing is important
\end{itemize}
Nearest Neighbor Search w/ k-d Tree

Finding nearest neighbor of a query point q

- Basically, traverse the tree, e.g., using BFS
- Maintain a current best candidate x
- Also maintain a queue of subtree distances to q
- Uses the subtree distances to prioritize search

Example

- Start with root $(0.42, 0.42)$
 - $x = (0.42, 0.42)$, both left and right subtrees are active
- Examine $(0.07, 0.55)$
 - Three trees on the queue afterward
- Examine $(0.82, 0.3)$, update $x = (0.82, 0.3)$
 - Truncate the left subtrees
 - Two subtrees left
- Examine $(0.72, 0.68)$, update $x = (0.72, 0.68)$
 - We are done since the last subtree is further from q than x
Performance of k-d Tree and Generalization

General performance of balanced k-d tree

- Construction: $O(n \log n)$ w/ $O(n)$ median computation
- Construction through presorting the points: $O(kn \log n)$
- Inserting/deletion of a new point: $O(\log n)$
- Nearest neighbor search: $O(\log n)$ for randomly distributed points

k-d trees can be used for k-NN (k nearest neighbor search) as well

- Naïve implementation: simply run 1-NN k times
- This yields $O(k \log n)$ running time
- Improvement
 - Keep up to k candidates
 - Only discard a subtree if worse than all k candidates

Applications of k-NN

- Widely used in classification tasks, e.g.,
 - Optical character recognition (OCR)
 - Pattern recognition
A Brief Look at the Issue of Distance Metric

Nearest neighbor queries requires a distance metric

⇒ Given two points \(x\) and \(q\), need to know their distance \(d(x, q)\)
⇒ Otherwise, cannot compare!
⇒ This is easy in Euclidean space:
\[
d(x, q) = ||x - q||_2 = \sqrt{\sum(x_i - q_i)^2}
\]
⇒ But what about \(T^2\) or \(\mathbb{R}^2 \times S^1\), or more complex settings?
 ⇒ For \(T^2\), \(\theta_1\) seems to be more important
 ⇒ For \(\mathbb{R}^2 \times S^1\), a small change in \(\theta\) can be hard to make
 ⇒ Sometimes, we can work with the workspace or task space
 ⇒ This however will make the sampling more difficult
⇒ There is no universal solution – requires some creativity
Sampling based methods need to check whether robot is in collision

− Generally, given two sets of points A and B, we want to check the distance between them

$$d(A, B) = \min_{a \in A, b \in B} |a - b|$$

− Clearly, A and B intersect (collide) if and only if $d(A, B) = 0$

$d(A, B) > 0$: no collision

$d(A, B) = 0$: collision
Collision checking can be difficult for general objects, e.g., $d(A, B)$ are hard to compute directly!

Often, simpler bounding volumes are used to approximate the shapes

- However, bounding volumes over approximate the shapes
- No collision between bounding volumes \rightarrow no collision between the shapes
- Collision between bounding volumes \rightarrow possible collision
- Need to refine hierarchically if a possible collision is detected
- Such a method is called bounded volume hierarchy (BVH)
Bounded Volume Hierarchy (BVH)

BVH breaks objects into smaller pieces
Which yields a hierarchy, represented as a **tree**

This is carried out incrementally
⇒ Finer hierarchies are created as needed and then saved for later
Starting from the roots and check for collision (how?)
- No collision → done with the branch
- Otherwise, check pairs of children on the trees
- Recursively call the procedure
- Traverse down the tree

How many possible checks in total (say each object has \(n \) pieces)?
- At most \(n^2 \) checks
- Using BVH can save some checks
Types of Bounding Volumes

Many types of bounding volumes are possible

- Spheres are simple and **orientation invariant** but do not fit tightly
- AABBs are even simpler, but not orientation invariant, not tight
- OBBs are orientation invariant, reasonably tight
- Convex hulls are tight and orientation invariant, but require more computation

Figure 5.9: Four different kinds of bounding regions: (a) sphere, (b) axis-aligned bounding box (AABB), (c) oriented bounding box (OBB), and (d) convex hull. Each usually provides a tighter approximation than the previous one but is more expensive to test for overlapping pairs.
Probabilistic Roadmap in More Detail

C_{free}, generally high dimensional
Generating Random Samples

Random sample
Rejecting Samples Outside C_{free}
Collecting Enough Samples in C_{free}
Connect to k Nearest Neighbors (If Possible)
Connect to k Nearest Neighbors (If Possible)
Query Phase

\[x \]
\[I \]
\[G \]
Path Smoothing
First proposed by Kavraki et al.

Algorithm 6 Roadmap Construction Algorithm

Input:
- n: number of nodes to put in the roadmap
- k: number of closest neighbors to examine for each configuration

Output:
- A roadmap $G = (V, E)$

1. $V \leftarrow \emptyset$
2. $E \leftarrow \emptyset$
3. while $|V| < n$ do
 4. repeat
 5. $q \leftarrow$ a random configuration in Q
 6. until q is collision-free
 7. $V \leftarrow V \cup \{q\}$
 8. end while
9. for all $q \in V$ do
 10. $N_q \leftarrow$ the k closest neighbors of q chosen from V according to dist
 11. for all $q' \in N_q$ do
 12. if $(q, q') \notin E$ and $\Delta(q, q') \neq \text{NIL}$ then
 13. $E \leftarrow E \cup \{(q, q')\}$
 14. end if
 15. end for
16. end for
Algorithm 7 Solve Query Algorithm

Input:
- \(q_{\text{init}} \): the initial configuration
- \(q_{\text{goal}} \): the goal configuration
- \(k \): the number of closest neighbors to examine for each configuration
- \(G = (V, E) \): the roadmap computed by algorithm 6

Output:
- A path from \(q_{\text{init}} \) to \(q_{\text{goal}} \) or failure

1: \(N_{q_{\text{init}}} \leftarrow \) the \(k \) closest neighbors of \(q_{\text{init}} \) from \(V \) according to \(\text{dist} \)
2: \(N_{q_{\text{goal}}} \leftarrow \) the \(k \) closest neighbors of \(q_{\text{goal}} \) from \(V \) according to \(\text{dist} \)
3: \(V \leftarrow \{q_{\text{init}}\} \cup \{q_{\text{goal}}\} \cup V \)
4: set \(q' \) to be the closest neighbor of \(q_{\text{init}} \) in \(N_{q_{\text{init}}} \)
5: repeat
6: \(\text{if } \Delta(q_{\text{init}}, q') \neq \text{NIL} \text{ then} \)
7: \(E \leftarrow (q_{\text{init}}, q') \cup E \)
8: \(\text{else} \)
9: set \(q' \) to be the next closest neighbor of \(q_{\text{init}} \) in \(N_{q_{\text{init}}} \)
10: \(\text{end if} \)
11: until a connection was successful or the set \(N_{q_{\text{init}}} \) is empty
12: set \(q' \) to be the closest neighbor of \(q_{\text{goal}} \) in \(N_{q_{\text{goal}}} \)
13: repeat
14: \(\text{if } \Delta(q_{\text{goal}}, q') \neq \text{NIL} \text{ then} \)
15: \(E \leftarrow (q_{\text{goal}}, q') \cup E \)
16: \(\text{else} \)
17: set \(q' \) to be the next closest neighbor of \(q_{\text{goal}} \) in \(N_{q_{\text{goal}}} \)
18: \(\text{end if} \)
19: until a connection was successful or the set \(N_{q_{\text{goal}}} \) is empty
20: \(P \leftarrow \) shortest path\((q_{\text{init}}, q_{\text{goal}}, G)\)
21: \(\text{if } P \text{ is not empty then} \)
22: \(\text{return } P \)
23: \(\text{else} \)
24: \(\text{return failure} \)
25: \(\text{end if} \)
A Look at Completeness

Sampling-based algorithms are no longer **complete**!

- If a solution exists, it will eventually find one and stop
- When there is no solution, the algorithm may keep running forever (so we need to have a timeout for these methods)

We need a new notion of completeness
A New Notion of Completeness

Define a new notion of completeness based on **denseness** of sampling

⇒ A set of samples is **dense** if dispersion $\delta(P) \to 0$ as $|P| \to \infty$

⇒ This means that the roadmap will get into any opening

⇒ But it is hard to predict when if we do not know how big is the opening

Resolution completeness

⇒ For deterministic sampling (e.g., using a Halton sequence)

⇒ An algorithm is **resolution complete** if it samples deterministically and densely

Probabilistic completeness

⇒ For probabilistic methods

⇒ An algorithm is **probabilistic complete** if it samples probabilistically, e.g., uniformly random, and densely