Lecture 07
EKF, UKF, Particle Filters, and SLAM

Instructor: Jingjin Yu
Outline

Kalman filter recap
Extended Kalman filter (EKF)
Unsented Kalman filter (UKF) and particle filters
Simultaneous localization and mapping (SLAM)
Sensing review
Kalman Filter Review

Kalman filter is a type of **Bayesian filters** over a **Hidden Markov model**

- The x_is are **hidden (actual)** system states that are **not directly known**
- We can only observe x_i using sensors to get observations z_i
- The (discrete) process is often modeled as a two-step iterative one
 - Noisy state change: $x_k = f(x_{k-1}, u_{k-1}) + \omega_{k-1}$
 - Noisy measurement after state change: $z_k = h(x_k) + \nu_k$
- The sequence of “data” is $u_0, z_1, u_1, z_2, u_2, z_3, ...$
- The goal is to derive an \hat{x}_k as an accurate **estimate** of x_k
Kalman Filter Review – Assumptions

Stochastic, discrete-time **linear** system

\[x_k = Ax_{k-1} + Bu_{k-1} + \omega_{k-1}, \quad \omega_{k-1} \sim N(0, Q) \]

\[\Rightarrow x_k, \omega_{k-1} \in \mathbb{R}^n, u_{k-1} \in \mathbb{R}^m, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \]

Linear observer (sensor)

\[z_k = Hx_k + \nu_k, \quad \nu_k \sim N(0, R) \]

\[\Rightarrow z_k, \nu_k \in \mathbb{R}^\ell, H \in \mathbb{R}^{\ell \times n} \]

Both \(\omega_{k-1} \) and \(\nu_k \) are **zero mean Gaussians** and are **uncorrelated**

\[\Rightarrow \text{i.e., Cov}(\omega, \nu) = 0 \]
Kalman Filter Review – Formulas

We have the iterative update algorithm

To run the algorithm

⇒ The values of A, B, and H are known, u_{k-1} and z_k are also known
⇒ The values of Q and R are estimated (system identification or sys ID)
⇒ Initial values \hat{x}_0 and P_0 are guessed
⇒ Usually P_k and K_k will quickly converge with the right Q and R
Extended Kalman Filter (EKF) – Assumptions

Kalman filter requires linearity, i.e.,

\[
x_k = Ax_{k-1} + Bu_{k-1} + \omega_{k-1}, \quad \omega_{k-1} \sim N(0, Q) \quad (1)
\]
\[
z_k = Hx_k + v_k, \quad v_k \sim N(0, R) \quad (2)
\]

These **nice assumptions** often do not hold in practice!

\[\Rightarrow\text{More realistic assumptions are}\]

\[
x_k = f(x_{k-1}, u_{k-1}, \omega_{k-1}), \quad \omega_{k-1} \sim N(0, Q) \quad (1^*)
\]
\[
z_k = h(x_k, v_k), \quad v_k \sim N(0, R) \quad (2^*)
\]

\[\Rightarrow\text{The functions } f \text{ and } h \text{ are non-linear}\]

\[\Rightarrow\text{Here, we know } f, h, u_{k-1}, z_k, \text{ and estimate } Q \text{ and } R\]

\[\Rightarrow\text{But, locally, } f \text{ and } h \text{ may be **linearly approximated**}\]

\[\Rightarrow\text{This is achieved using **Taylor series**}\]

Extended Kalman filter provides an **ad-hoc** extension to Kalman filters based on these assumptions, to compute the estimate, \(\hat{x}_k\).
Update Equations for EKF

We have the iterative update algorithm

Time update

\[
\begin{align*}
\hat{x}_k^- &= f(\hat{x}_{k-1}, u_{k-1}, 0) \\
P_k^- &= A_k P_{k-1} A_k^T + W_k Q_{k-1} W_k^T \\
A_k &= \frac{\partial f}{\partial x} |_{\hat{x}_{k-1}, u_{k-1}, 0} \\
W_k &= \frac{\partial f}{\partial \omega} |_{\hat{x}_{k-1}, u_{k-1}, 0}
\end{align*}
\]

Measurement update

\[
\begin{align*}
\hat{x}_k &= \hat{x}_k^- + K_k (z_k - h(\hat{x}_k^-, 0)) \\
K_k &= \frac{P_k^- H_k^T}{H_k P_k^- H_k^T + V_k R V_k^T} \\
P_k &= (I - K_k H_k) P_k^- \\
H_k &= \frac{\partial h}{\partial x} |_{\hat{x}_k^-, 0} \\
V_k &= \frac{\partial h}{\partial \nu} |_{\hat{x}_k^-, 0}
\end{align*}
\]

To run the algorithm

- Again, estimate Q and R offline (sys ID)
- Start filter with some initial \hat{x}_0 and P_0
- The values for A, W, H, and V change in each iteration
- Similar to Kalman filter, P_k and K_k can converge quickly if the model is right
A Note on the Two Update Steps

Both Kalman filter and EKF have time and measurement updates

⇒ Kalman filter

<table>
<thead>
<tr>
<th>Time update</th>
<th>Measurement update</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{x}k^- = A\hat{x}{k-1} + Bu_{k-1}$</td>
<td>$\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$</td>
</tr>
<tr>
<td>$P_k^- = AP_{k-1}A^T + Q$</td>
<td>$K_k = P_k^-H^T(HP_k^-H^T + R)^{-1}$, $P_k = (I - K_kH)P_k^-$</td>
</tr>
</tbody>
</table>

⇒ Extended Kalman filter

<table>
<thead>
<tr>
<th>Time update</th>
<th>Measurement update</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{x}k^- = f(\hat{x}{k-1}, u_{k-1}, 0)$</td>
<td>$\hat{x}_k = \hat{x}_k^- + K_k(z_k - h(\hat{x}_k^-, 0))$</td>
</tr>
<tr>
<td>$P_k^- = A_kP_{k-1}A_k^T + W_kQ_{k-1}W_k^T$</td>
<td>$K_k = P_k^-H_k^T(H_kP_k^-H_k^T + V_kR_{k}V_k^T)^{-1}$</td>
</tr>
<tr>
<td>$A_k = \frac{\partial f}{\partial x}</td>
<td>{\hat{x}{k-1}, u_{k-1}, 0}$</td>
</tr>
<tr>
<td>$W_k = \frac{\partial f}{\partial \omega}</td>
<td>{\hat{x}{k-1}, u_{k-1}, 0}$</td>
</tr>
</tbody>
</table>

One can mix and match these!

⇒ E.g., one can build a filter with T_2 and M_1. Or T_1 and M_2

⇒ This generally applies to two-stage filters including later ones
Issues with the Extended Kalman Filter

There are many issues with EKF

- Can perform poorly with highly non-linear f and h
 - i.e., Taylor expansion may not capture f or h well enough
 - This can be particularly true for f

- Also, computing $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial \omega}$, and $\frac{\partial h}{\partial v}$ may be difficult or impossible
 - E.g., f may be very complex and may not even have a closed form
Unscented Kalman Filter and Particle Filter

Unscented Kalman filter (UKF) and Particle filter avoid such problems

⇒ For time update
 ⇒ Directly sample \(\hat{x}_{k-1} \) and obtain a certain number of samples \(\tilde{x}_{k-1}^i \) with weights
 ⇒ Directly “push” the samples through \(f \)
 ⇒ Compute \(\hat{x}_k^- \) and \(P_k^- \) from these updated samples
 ⇒ This can be imagined as running many Kalman filters

⇒ Similar steps for measurement update

⇒ Comparison to Kalman filter/EKF

⇒ Difference between UKF and particle filters
 ⇒ UKF uses deterministic samples (so called “unscented” transformation)
 ⇒ Particle filters use Monte Carlo sampling, usually with more samples than UKF
Simultaneous Localization and Mapping

Suppose you arrived a new town (e.g., travel, or playing an RPG)

- How do you explore?
- Move around and look for landmarks
 - Houses, buildings, roads, etc.
- Build map with the landmarks
- Localize yourself on the map

Robots would need to do the same

- Build a map using landmarks
- Localize using the map
- Simultaneous localization and mapping (SLAM)
- This is partially a “chicken-egg” problem
- Very similar to Kalman filter
 - Time update
 - Measurement update
SLAM, More Formally

Problem setup

⇒ A robot moves in an environment with states x_k
⇒ Make relative observation of $m = m_1, ..., m_n$ landmark locations
⇒ State history $X_k = \{x_0, ..., x_k\} = X_{k-1} \cup \{x_k\}$
⇒ Control u_k applied at x_{k-1}
⇒ $U_k = \{u_1, ..., u_k\} = U_{k-1} \cup \{u_k\}$
⇒ z_{ik}: an observation of the i-th landmark at time step k
⇒ $z_k = (z_{1k}, ..., z_{nk})$ and $Z_k = \{z_1, ..., z_k\} = Z_{k-1} \cup \{z_k\}$
⇒ Motion model: $P(x_k | x_{k-1}, u_k)$
 ⇒ This is similar to $x_k = f(x_{k-1}, u_k, \omega)$
 ⇒ Note the indexing is different from Kalman filter – this is due to convention
⇒ Observation model: $P(z_k | x_k, m)$

SLAM is to compute the following probability distribution

$$P(x_k, m | Z_k, U_k, x_0)$$

SLAM also has time and observation (measurement) updates
SLAM Time Update

The time update makes predictions based on x_{k-1} and u_k, i.e.,

$$P(x_k, \mathbf{m} | Z_{k-1}, U_k, x_0) = \int P(x_k, x_{k-1}, \mathbf{m} | Z_{k-1}, U_k, x_0) dx_{k-1} \quad \text{(marginalization)}$$

$$= \int \frac{P(x_k,x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)}{P(Z_{k-1}, U_k, x_0)} dx_{k-1}$$

$$= \int \frac{P(x_k,x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)}{P(x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)} \frac{P(x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)}{P(Z_{k-1}, U_k, x_0)} dx_{k-1}$$

$$= \int P(x_k | x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0) P(x_{k-1}, \mathbf{m} | Z_{k-1}, U_k, x_0) dx_{k-1}$$

$$= \int P(x_k | x_{k-1}, u_k) P(x_{k-1}, \mathbf{m} | Z_{k-1}, U_{k-1}, x_0) dx_{k-1}$$

⇒ The last step applies two conditional independences

⇒ $P(x_k | x_{k-1}, u_k) = P(x_k | x_{k-1}, \mathbf{m}, Z_{k-1}, U_k, x_0)$

⇒ $P(x_{k-1}, \mathbf{m} | Z_{k-1}, U_{k-1}, x_0) = P(x_{k-1}, \mathbf{m} | Z_{k-1}, U_k, x_0)$

⇒ The term $P(x_k | x_{k-1}, u_k)$ is provided

⇒ E.g., $x_k = Ax_{k-1} + Bu_k + \omega_{k-1}$ in a Kalman filter

⇒ The term $P(x_{k-1}, \mathbf{m} | Z_{k-1}, U_{k-1}, x_0)$ is from previous iteration or x_0

⇒ So this step is basically the same as the time update of a Kalman filter
SLAM Observation Update

The observation update estimate x_k, m based on time update and z_k

$$
P (x_k, m \mid Z_k, U_k, x_0)
= P (x_k, m \mid Z_k, Z_{k-1}, U_k, x_0)
= \frac{P(x_k, m, z_k, Z_{k-1}, U_k, x_0)}{P(z_k, Z_{k-1}, U_k, x_0)}
= \frac{P(x_k, m, z_k, Z_{k-1}, U_k, x_0) P(x_k, m, Z_{k-1}, U_k, x_0)}{P(x_k, m, Z_{k-1}, U_k, x_0) P(Z_{k-1}, U_k, x_0)} \frac{P(Z_{k-1}, U_k, x_0)}{P(z_k, Z_{k-1}, U_k, x_0)}
= \frac{P(z_k \mid x_k, m) P(x_k, m \mid Z_{k-1}, U_k, x_0)}{P(z_k \mid Z_{k-1}, U_k, x_0)}
\propto P(z_k \mid x_k, m) P(x_k, m \mid Z_{k-1}, U_k, x_0)
$$

\Rightarrow The term $P(z_k \mid Z_{k-1}, U_k, x_0)$ can be normalized and does not matter

\Rightarrow The term $P(z_k \mid x_k, m)$ is based on observation

\Rightarrow In extended Kalman filter, this is just $z_k = h(x_k, v_k)$

\Rightarrow In SLAM this is the challenging step

\Rightarrow Uses many techniques, e.g., iterative closest point fitting (ICP)

\Rightarrow Not part of the focus of this course – mostly computer vision techniques

\Rightarrow The term $P(x_k, m \mid Z_{k-1}, U_k, x_0)$ is from time update
Sensing Review

Sensor mechanisms

- Triangulation
- Trilateration

Localization techniques

- Triangulation
- Trilateration

Bayesian filters

- Kalman filter, EKF
- UKF/particle filters
- Simultaneous localization and mapping (SLAM)